1
|
Liao X, Liu J, Guo X, Meng R, Zhang W, Zhou J, Xie X, Zhou H. Origin and Function of Monocytes in Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2897-2914. [PMID: 38764499 PMCID: PMC11100499 DOI: 10.2147/jir.s450801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Xiaolong Guo
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruiping Meng
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Yang Y, He J, Suo Y, Lv L, Wang J, Huo C, Zheng Z, Wang Z, Li J, Sun W, Zhang Y. Anti-inflammatory effect of taurocholate on TNBS-induced ulcerative colitis in mice. Biomed Pharmacother 2016; 81:424-430. [DOI: 10.1016/j.biopha.2016.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023] Open
|
3
|
Tauroursodeoxycholate improves 2,4,6-trinitrobenzenesulfonic acid-induced experimental acute ulcerative colitis in mice. Int Immunopharmacol 2016; 36:271-276. [DOI: 10.1016/j.intimp.2016.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/16/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023]
|
4
|
Zhang Y, Li F, Wang H, Yin C, Huang J, Mahavadi S, Murthy KS, Hu W. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis. Dig Dis Sci 2016; 61:1925-40. [PMID: 26879904 PMCID: PMC4920730 DOI: 10.1007/s10620-016-4078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The contractility of colonic smooth muscle is dysregulated due to immune/inflammatory responses in inflammatory bowel diseases. Inflammation in vitro induces up-regulation of regulator of G-protein signaling 4 (RGS4) expression in colonic smooth muscle cells. AIMS To characterize the immune/inflammatory responses and RGS4 expression pattern in colonic smooth muscle after induction of colitis. METHODS Colitis was induced in rabbits by intrarectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Innate/adaptive immune response RT-qPCR array was performed using colonic circular muscle strips. At 1-9 weeks after colonic intramuscular microinjection of lentivirus, the distal and proximal colons were collected, and muscle strips and dispersed muscle cells were prepared from circular muscle layer. Expression levels of RGS4 and NFκB signaling components were determined by Western blot analysis. The biological consequences of RGS4 knockdown were assessed by measurement of muscle contraction and phospholipase C (PLC)-β activity in response to acetylcholine (ACh). RESULTS Contraction in response to ACh was significantly inhibited in the inflamed colonic circular smooth muscle cells. RGS4, IL-1, IL-6, IL-8, CCL3, CD1D, and ITGB2 were significantly up-regulated, while IL-18, CXCR4, CD86, and C3 were significantly down-regulated in the inflamed muscle strips. RGS4 protein expression in the inflamed smooth muscles was dramatically increased. RGS4 stable knockdown in vivo augmented ACh-stimulated PLC-β activity and contraction in colonic smooth muscle cells. CONCLUSION Inflamed smooth muscle exhibits up-regulation of IL-1-related signaling components, Th1 cytokines and RGS4, and inhibition of contraction. Stable knockdown of endogenous RGS4 in colonic smooth muscle increases PLC-β activity and contractile responses.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Fang Li
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Hong Wang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Chaoran Yin
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - JieAn Huang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, No. 6 Shuangyong Rd, Nanning 530021, Guangxi, China
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298, USA
| | - Karnam S. Murthy
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298, USA
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Leonel AJ, Silva EL, Aguilar EC, Teixeira LG, Oliveira RP, Faria AMC, Cara DC, Ferreira LAM, Alvarez‐Leite JI. Systemic administration of a nanoemulsion with tributyrin reduces inflammation in experimental colitis. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201400359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alda Jusceline Leonel
- Department of Biochemistry and ImmunologyUniversidade Federal Minas GeraisBelo HorizonteBrazil
| | - Elton Luiz Silva
- Department of Pharmaceutical Products, Faculty of PharmacyUniversidade Federal Minas GeraisBelo HorizonteBrazil
| | - Edenil Costa Aguilar
- Department of Biochemistry and ImmunologyUniversidade Federal Minas GeraisBelo HorizonteBrazil
| | | | - Rafael Pires Oliveira
- Department of Biochemistry and ImmunologyUniversidade Federal Minas GeraisBelo HorizonteBrazil
| | - Ana Maria Caetano Faria
- Department of Biochemistry and ImmunologyUniversidade Federal Minas GeraisBelo HorizonteBrazil
| | - Denise Carmona Cara
- Department of Morphology, Institute of Biological SciencesUniversidade Federal Minas GeraisBelo HorizonteBrazil
| | | | | |
Collapse
|
6
|
Zhang F, Li X, Xu X, Cai D, Zhang J. Relationship between the pH of enema solutions and intestinal damage in rabbits. Biol Res Nurs 2014; 17:78-86. [PMID: 25504953 DOI: 10.1177/1099800414527154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mechanical enemas can lead to intestinal mucosal injuries and bowel barrier damage, presenting as electrolyte disturbances and functional intestinal disorders. Most researchers believe that the mechanism of injury is related to osmolality, volume and temperature of the solution, infusion pressure, and the composition of the enema tube. We hypothesized that the pH of the enema solution may also contribute to intestinal damage. We administered enema solutions--normal saline, soapsuds, or vinegar (neutral, alkaline, or acidic solutions, respectively)--to three groups of rabbits (n = 20 per group). The solutions were standardized for volume and temperature and the soapsuds and vinegar solutions were adjusted to be isotonic with normal saline or deionized water. We also included a control group (n = 20) in which the enema tubes were inserted but no solution was administered. We biopsied 3 sites (rectum and distal and proximal colon). Damage to intestinal mucosa was observed by light microscopy and transmission electron microscopy. In order to explore the detection of damage using noninvasive methods, cyclooxygenase (COX)-2 gene expression was measured in the exfoliated cells gathered from postenema defecation. Epithelial loss, inflammatory reaction, and cellular microstructure damage was increased in the vinegar and soapsuds groups. Also, exfoliated cells in these groups had higher COX-2 expression than the normal saline group. The acidic and alkaline enema solutions thus caused more severe damage to the intestinal mucosa compared to the neutral liquid, supporting our hypothesis. Further, the detection of COX-2 expression shows promise as a noninvasive method for estimating enema-induced damage.
Collapse
Affiliation(s)
- Feng Zhang
- School of Nursing, Nantong University, Nantong City, Jiangsu Province, China
| | - Xia Li
- School of Nursing, Nantong University, Nantong City, Jiangsu Province, China
| | - Xujuan Xu
- Affiliated hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Duanying Cai
- School of Nursing, Nantong University, Nantong City, Jiangsu Province, China
| | - Jianguo Zhang
- Affiliated hospital of Nantong University, Nantong City, Jiangsu Province, China
| |
Collapse
|