1
|
Lee MJ, Hammouda MB, Miao W, Okafor AE, Jin YJ, Sun H, Jain V, Markovtsov V, Diao Y, Gregory SG, Zhang JY. UBE2N Is Essential for Maintenance of Skin Homeostasis and Suppression of Inflammation. J Invest Dermatol 2024:S0022-202X(24)00376-2. [PMID: 38796140 DOI: 10.1016/j.jid.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
UBE2N, a Lys63 ubiquitin-conjugating enzyme, plays critical roles in embryogenesis and immune system development and function. However, its roles in adult epithelial tissue homeostasis and pathogenesis are unclear. We generated conditional mouse models that deleted Ube2n in skin cells in a temporally and spatially controlled manner. We found that Ube2n knockout in the adult skin keratinocytes induced a range of inflammatory skin defects characteristic of psoriatic and actinic keratosis. These included inflammation, epidermal and dermal thickening, parakeratosis, and increased immune cell infiltration as well as signs of edema and blistering. Single-cell transcriptomic analyses and RT-qPCR showed that Ube2n-knockout keratinocytes expressed elevated myeloid cell chemoattractants such as Cxcl1 and Cxcl2 and decreased the homeostatic T lymphocyte chemoattractant Ccl27a. Consistently, the infiltrating immune cells were predominantly myeloid-derived cells, including neutrophils and M1-like macrophages, which expressed high levels of inflammatory cytokines such as Il1β and Il24. Pharmacological blockade of the IL-1 receptor associated kinases (IRAK1/4) alleviated inflammation, epidermal and dermal thickening, and immune infiltration of the Ube2n-mutant skin. Together, these findings highlight a key role of keratinocyte UBE2N in maintenance of epidermal homeostasis and skin immunity and identify IRAK1/4 as potential therapeutic target for inflammatory skin disorders.
Collapse
Affiliation(s)
- Min Jin Lee
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA; Department of Molecular Genetics & Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Manel Ben Hammouda
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Wanying Miao
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Arinze E Okafor
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Yingai J Jin
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Huiying Sun
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | | | - Yarui Diao
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, School of Medicine, Duke University, Durham, North Carolina, USA; Department of Pathology, School of Medicine, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
2
|
Lee MJ, Hammouda MB, Miao W, Okafor A, Jin Y, Sun H, Jain V, Markovtsov V, Diao Y, Gregory SG, Zhang JY. UBE2N is essential for maintenance of skin homeostasis and suppression of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569631. [PMID: 38105982 PMCID: PMC10723344 DOI: 10.1101/2023.12.01.569631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
UBE2N, a Lys63-ubiquitin conjugating enzyme, plays critical roles in embryogenesis and immune system development and function. However, its roles in adult epithelial tissue homeostasis and pathogenesis are unclear. We generated conditional mouse models that deleted Ube2n in skin cells in a temporally and spatially controlled manner. We found that Ube2n-knockout (KO) in the adult skin keratinocytes induced a range of inflammatory skin defects characteristic of psoriatic and actinic keratosis. These included eczematous inflammation, epidermal and dermal thickening, parakeratosis, and increased immune cell infiltration, as well as signs of edema and blistering. Single cell transcriptomic analyses and RT-qPCR showed that Ube2n KO keratinocytes expressed elevated myeloid cell chemo-attractants such as Cxcl1 and Cxcl2 and decreased the homeostatic T lymphocyte chemo-attractant, Ccl27a. Consistently, the infiltrating immune cells of Ube2n-KO skin were predominantly myeloid-derived cells including neutrophils and M1-like macrophages that were highly inflammatory, as indicated by expression of Il1β and Il24. Pharmacological blockade of the IL-1 receptor associated kinases (IRAK1/4) alleviated eczema, epidermal and dermal thickening, and immune infiltration of the Ube2n mutant skin. Together, these findings highlight a key role of keratinocyte-UBE2N in maintenance of epidermal homeostasis and skin immunity and identify IRAK1/4 as potential therapeutic target for inflammatory skin disorders.
Collapse
Affiliation(s)
- Min Jin Lee
- Department of Dermatology, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | | | - Wanying Miao
- Department of Dermatology, Duke University, Durham, NC, USA
| | - Arinze Okafor
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Yingai Jin
- Department of Dermatology, Duke University, Durham, NC, USA
| | - Huiying Sun
- Department of Dermatology, Duke University, Durham, NC, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Durham, NC, USA
| | | | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Davila ML, Xu M, Huang C, Gaddes ER, Winter L, Cantorna MT, Wang Y, Xiong N. CCL27 is a crucial regulator of immune homeostasis of the skin and mucosal tissues. iScience 2022; 25:104426. [PMID: 35663027 PMCID: PMC9157018 DOI: 10.1016/j.isci.2022.104426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Abundant immune cells reside in barrier tissues. Understanding the regulation of these cells can yield insights on their roles in tissue homeostasis and inflammation. Here, we report that the chemokine CCL27 is critical for establishment of resident lymphocytes and immune homeostasis in barrier tissues. CCL27 expression is associated with normal skin and hair follicle development independent of commensal bacterial stimulation, indicative of a homeostatic role for the chemokine. Accordingly, in the skin of CCL27-knockout mice, there is a reduced presence and dysregulated localization of T cells that express CCR10, the cognate receptor to CCL27. Besides, CCL27-knockout mice have overreactive skin inflammatory responses in an imiquimod-induced model of psoriasis. Beyond the skin, CCL27-knockout mice have increased infiltration of CCR10+ T cells into lungs and reproductive tracts, the latter of which also exhibit spontaneous inflammation. Our findings demonstrate that CCL27 is critical for immune homeostasis across barrier tissues.
Collapse
Affiliation(s)
- Micha L Davila
- Immunology and Infectious Disease Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Ming Xu
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Chengyu Huang
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Erin R Gaddes
- Department of Biomedical Engineering, 526 CBEB, The Pennsylvania State University, University Park, PA 16802, USA
| | - Levi Winter
- Pathobiology Graduate Program, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margherita T Cantorna
- Pathobiology Graduate Program, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, 526 CBEB, The Pennsylvania State University, University Park, PA 16802, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA.,Department of Medicine-Division of Dermatology and Cutaneous Surgery University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Fernandes SE, Saini DK. The ERK-p38MAPK-STAT3 Signalling Axis Regulates iNOS Expression and Salmonella Infection in Senescent Cells. Front Cell Infect Microbiol 2021; 11:744013. [PMID: 34746026 PMCID: PMC8569389 DOI: 10.3389/fcimb.2021.744013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
The cellular changes occurring due to senescence like proliferation arrest, increase in free radical levels, and secretion of pro-inflammatory cytokines have been well studied, but its associated alteration in intracellular signalling networks has been scarcely explored. In this study, we examine the roles of three major kinases viz. p38 MAPK, ERK, and STAT3 in regulating iNOS expression and thereby the levels of the free radical Nitric oxide in senescent cells. Our study revealed that these kinases could differentially regulate iNOS in senescent cells compared to non-senescent cells. Further, we tested the physiological relevance of these alterations with Salmonella infection assays and established an inter-regulatory network between these kinases unique to infected senescent cells. Overall, our findings show how key signalling networks may be rewired in senescent cells rendering them phenotypically different.
Collapse
Affiliation(s)
- Sheryl Erica Fernandes
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
- Center For BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
McArthur L, Riddell A, Chilton L, Smith GL, Nicklin SA. Regulation of connexin 43 by interleukin 1β in adult rat cardiac fibroblasts and effects in an adult rat cardiac myocyte: fibroblast co-culture model. Heliyon 2019; 6:e03031. [PMID: 31909243 PMCID: PMC6940628 DOI: 10.1016/j.heliyon.2019.e03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Connexin 43 expression (Cx43) is increased in cardiac fibroblasts (CFs) following myocardial infarction. Here, potential mediators responsible for increasing Cx43 expression and effects of differential CF phenotype on cardiac myocyte (CM) function were investigated. Stimulating adult rat CFs with proinflammatory mediators revealed that interleukin 1β (IL-1β) significantly enhanced Cx43 levels through the IL-1β pathway. Additionally, IL-1β reduced mRNA levels of the myofibroblast (MF) markers: (i) connective tissue growth factor (CTGF) and (ii) α smooth muscle actin (αSMA), compared to control CFs. A co-culture adult rat CM:CF model was utilised to examine cell-to-cell interactions. Transfer of calcein from CMs to underlying CFs suggested functional gap junction formation. Functional analysis revealed contraction duration (CD) of CMs was shortened in co-culture with CFs, while treatment of CFs with IL-1β reduced this mechanical effect of co-culture. No effect on action potential rise time or duration of CMs cultured with control or IL-1β-treated CFs was observed. These data demonstrate that stimulating CFs with IL-1β increases Cx43 and reduces MF marker expression, suggesting altered cell phenotype. These changes may underlie the reduced mechanical effects of IL-1β treated CFs on CD of co-cultured CMs and therefore have an implication for our understanding of heterocellular interactions in cardiac disease.
Collapse
Affiliation(s)
- Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Alexandra Riddell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Lisa Chilton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
6
|
Choi DW, Kwon DA, Jung SK, See HJ, Jung SY, Shon DH, Shin HS. Silkworm dropping extract ameliorate trimellitic anhydride-induced allergic contact dermatitis by regulating Th1/Th2 immune response. Biosci Biotechnol Biochem 2018; 82:1531-1538. [PMID: 29806566 DOI: 10.1080/09168451.2018.1475210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by hapten-specific immune response. Silkworm droppings are known to exert beneficial effects during the treatment of inflammatory diseases. Here, we studied whether topical treatment and oral administration of silkworm dropping extract (SDE) ameliorate trimellitic anhydride (TMA)-induced ACD. In ACD mice model, SDE treatment significantly suppressed the increase in both ear thickness and serum IgE levels. Furthermore, IL-1β and TNF-α levels were reduced by SDE. In allergic responses, SDE treatment significantly attenuated the production of the Th2-associated cytokine IL-4 in both ear tissue and draining lymph nodes. However, it increased the production of the Th1-mediated cytokine IL-12. Thus, these results showed that SDE attenuated TMA-induced ACD symptoms through regulation of Th1/Th2 immune response. Taken together, we suggest that SDE treatment might be a potential agent in the prevention or therapy of Th2-mediated inflammatory skin diseases such as ACD and atopic dermatitis. ABBREVIATIONS ACD: allergic contact dermatitis; AD: atopic dermatitis; APC: antigen presenting cells; CCL: chemokine (C-C motif) ligand; CCR: C-C chemokine receptor; Dex: dexamethasone; ELISA: enzyme-linked immunosorbent assay; IFN: interferon; Ig: immunoglobulin; IL: interleukin; OVA: ovalbumin; PS: prednisolone; SDE: silkworm dropping extract; Th: T helper; TMA: trimellitic anhydride; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Dae Woon Choi
- a Food Biotechnology Program , Korea University of Science and Technology , Republic of Korea.,b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| | - Da-Ae Kwon
- b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| | - Sung Keun Jung
- a Food Biotechnology Program , Korea University of Science and Technology , Republic of Korea.,c Division of Functional Food Research , Korea Food Research Institute , Wanju-gun , Republic of Korea.,e School of Food Science and Biotechnology , Kyungpook National University , Daegu , Republic of Korea
| | - Hye-Jeong See
- b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| | - Sun Young Jung
- a Food Biotechnology Program , Korea University of Science and Technology , Republic of Korea.,b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| | - Dong-Hwa Shon
- b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea.,d Department of Food Processing and Distribution , Gangneung-Wonju National University , Gangneung , Republic of Korea
| | - Hee Soon Shin
- a Food Biotechnology Program , Korea University of Science and Technology , Republic of Korea.,b Division of Nutrition and Metabolism Research , Korea Food Research Institute , Wanju-gun , Republic of Korea
| |
Collapse
|
7
|
Thangavadivel S, Zelle-Rieser C, Olivier A, Postert B, Untergasser G, Kern J, Brunner A, Gunsilius E, Biedermann R, Hajek R, Pour L, Willenbacher W, Greil R, Jöhrer K. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma. Oncotarget 2018; 7:78605-78618. [PMID: 27732933 PMCID: PMC5346663 DOI: 10.18632/oncotarget.12522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
The bone marrow microenvironment plays a decisive role in multiple myeloma progression and drug resistance. Chemokines are soluble mediators of cell migration, proliferation and survival and essentially modulate tumor progression and drug resistance. Here we investigated bone marrow-derived chemokines of naive and therapy-refractory myeloma patients and discovered that high levels of the chemokine CCL27, known so far for its role in skin inflammatory processes, correlated with worse overall survival of the patients. In addition, chemokine levels were significantly higher in samples from patients who became refractory to bortezomib at first line treatment compared to resistance at later treatment lines. In vitro as well as in an in vivo model we could show that CCL27 triggers bortezomib-resistance of myeloma cells. This effect was strictly dependent on the expression of the respective receptor, CCR10, on stroma cells and involved the modulation of IL-10 expression, activation of myeloma survival pathways, and modulation of proteasomal activity. Drug resistance could be totally reversed by blocking CCR10 by siRNA as well as blocking IL-10 and its receptor. From our data we suggest that blocking the CCR10/CCL27/IL-10 myeloma-stroma crosstalk is a novel therapeutic target that could be especially relevant in early refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Benno Postert
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Gerold Untergasser
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Johann Kern
- Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Eberhard Gunsilius
- Laboratory of Tumor Angiogenesis and Tumorbiology, Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Biedermann
- Department of Orthopedic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Roman Hajek
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.,Department of Hematooncology, Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | - Ludek Pour
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic.,Department of Hematooncology, Faculty of Medicine, University of Ostrava and University Hospital Ostrava, Ostrava, Czech Republic
| | - Wolfgang Willenbacher
- Department of Internal Medicine V, University Hospital Innsbruck, Innsbruck, Austria
| | - Richard Greil
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Salzburg Cancer Research Institute-Laboratory of Immunological and Molecular Cancer Research, Salzburg, Austria.,Third Medical Department at The Paracelsus Medical University Salzburg, Austria.,Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
8
|
Establishment and function of tissue-resident innate lymphoid cells in the skin. Protein Cell 2017; 8:489-500. [PMID: 28271445 PMCID: PMC5498338 DOI: 10.1007/s13238-017-0388-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
Innate lymphoid cells (ILCs) are a newly classified family of immune cells of the lymphoid lineage. While they could be found in both lymphoid organs and non-lymphoid tissues, ILCs are preferentially enriched in barrier tissues such as the skin, intestine, and lung where they could play important roles in maintenance of tissue integrity and function and protection against assaults of foreign agents. On the other hand, dysregulated activation of ILCs could contribute to tissue inflammatory diseases. In spite of recent progress towards understanding roles of ILCs in the health and disease, mechanisms regulating specific establishment, activation, and function of ILCs in barrier tissues are still poorly understood. We herein review the up-to-date understanding of tissue-specific relevance of ILCs. Particularly we will focus on resident ILCs of the skin, the outmost barrier tissue critical in protection against various foreign hazardous agents and maintenance of thermal and water balance. In addition, we will discuss remaining outstanding questions yet to be addressed.
Collapse
|
9
|
Karakawa M, Komine M, Hanakawa Y, Tsuda H, Sayama K, Tamaki K, Ohtsuki M. CCL27 Is Downregulated by Interferon Gamma via Epidermal Growth Factor Receptor in Normal Human Epidermal Keratinocytes. J Cell Physiol 2014; 229:1935-45. [DOI: 10.1002/jcp.24643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/02/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Masaru Karakawa
- Department of Dermatology; University of Tokyo; Bunkyo-ku Tokyo Japan
- Department of Dermatology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Mayumi Komine
- Department of Dermatology; University of Tokyo; Bunkyo-ku Tokyo Japan
- Department of Dermatology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Yasushi Hanakawa
- Department of Dermatology; University of Ehime; Tou-on-shi Ehime Japan
| | - Hidetoshi Tsuda
- Department of Dermatology; Jichi Medical University; Shimotsuke Tochigi Japan
| | - Koji Sayama
- Department of Dermatology; University of Ehime; Tou-on-shi Ehime Japan
| | - Kunihiko Tamaki
- Department of Dermatology; University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology; Jichi Medical University; Shimotsuke Tochigi Japan
| |
Collapse
|
10
|
Arasa J, Martos P, Terencio MC, Valcuende-Cavero F, Montesinos MC. Topical application of the adenosine A2Areceptor agonist CGS-21680 prevents phorbol-induced epidermal hyperplasia and inflammation in mice. Exp Dermatol 2014; 23:555-60. [DOI: 10.1111/exd.12461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Jorge Arasa
- Departament of Pharmacology; Faculty of Pharmacy; University of Valencia; Valencia Spain
- Center of Molecular Recognition and Technological Development (IDM); Valencia Spain
| | - Patricio Martos
- Departament of Pharmacology; Faculty of Pharmacy; University of Valencia; Valencia Spain
| | - María Carmen Terencio
- Departament of Pharmacology; Faculty of Pharmacy; University of Valencia; Valencia Spain
- Center of Molecular Recognition and Technological Development (IDM); Valencia Spain
| | - Francisca Valcuende-Cavero
- Department of Dermatology; University Hospital La Plana; Vila-real Spain
- Department of Medicine and Surgery; CEU Cardinal Herrera University; Castellón de la Plana Spain
| | - María Carmen Montesinos
- Departament of Pharmacology; Faculty of Pharmacy; University of Valencia; Valencia Spain
- Center of Molecular Recognition and Technological Development (IDM); Valencia Spain
| |
Collapse
|
11
|
Andrés RM, Montesinos MC, Navalón P, Payá M, Terencio MC. NF-κB and STAT3 inhibition as a therapeutic strategy in psoriasis: in vitro and in vivo effects of BTH. J Invest Dermatol 2013; 133:2362-2371. [PMID: 23594598 DOI: 10.1038/jid.2013.182] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 01/14/2013] [Accepted: 03/04/2013] [Indexed: 12/18/2022]
Abstract
Benzo[b]thiophen-2-yl-3-bromo-5-hydroxy-5H-furan-2-one (BTH) is a simple and interesting synthetic derivative of petrosaspongiolide M, a natural compound isolated from a sea sponge with demonstrated potent anti-inflammatory activity through inhibition of the NF-κB signaling pathway. In the present study, we report the in vitro and in vivo pharmacological effect of BTH on some parameters related to the innate and adaptive response in the pathogenesis of psoriasis. BTH inhibited the release of some of the key psoriatic cytokines such as tumor necrosis factor α, IL-8, IL-6, and CCL27 through the downregulation of NF-κB in normal human keratinocytes. Moreover, it impaired signal transducers and activators of transcription 3 (STAT3) phosphorylation and translocation to the nucleus, which resulted in decreased keratinocyte proliferation. These results were confirmed in vivo in two murine models of psoriasis: the epidermal hyperplasia induced by 12-O-tetradecanoylphorbol-13-acetate and the imiquimod-induced skin inflammation model. In both cases, topical administration of BTH prevented skin infiltration and hyperplasia through suppression of NF-κB and STAT3 phosphorylation. Our results confirm the pivotal role of both transcriptional factors in skin inflammation, as occurs in psoriasis, and highlight the potential of small molecules as therapeutic agents for the treatment of this skin disease, with BTH being a potential candidate for future drug research.
Collapse
Affiliation(s)
- Rosa M Andrés
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain; Center of Molecular Recognition and Technological Development, University of Valencia, Valencia, Spain
| | - M Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain; Center of Molecular Recognition and Technological Development, University of Valencia, Valencia, Spain
| | - Pedro Navalón
- Department of Urology, General University Hospital of Valencia, Valencia, Spain
| | - Miguel Payá
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain; Center of Molecular Recognition and Technological Development, University of Valencia, Valencia, Spain
| | - M Carmen Terencio
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain; Center of Molecular Recognition and Technological Development, University of Valencia, Valencia, Spain.
| |
Collapse
|
12
|
Andrés RM, Payá M, Montesinos MC, Ubeda A, Navalón P, Herrero M, Vergés J, Terencio MC. Potential antipsoriatic effect of chondroitin sulfate through inhibition of NF-κB and STAT3 in human keratinocytes. Pharmacol Res 2013; 70:20-6. [DOI: 10.1016/j.phrs.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/21/2022]
|
13
|
CCR10 and its ligands in regulation of epithelial immunity and diseases. Protein Cell 2012; 3:571-80. [PMID: 22684736 DOI: 10.1007/s13238-012-2927-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues covering the external and internal surface of a body are constantly under physical, chemical or biological assaults. To protect the epithelial tissues and maintain their homeostasis, multiple layers of immune defense mechanisms are required. Besides the epithelial tissue-resident immune cells that provide the first line of defense, circulating immune cells are also recruited into the local tissues in response to challenges. Chemokines and chemokine receptors regulate tissue-specific migration, maintenance and functions of immune cells. Among them, chemokine receptor CCR10 and its ligands chemokines CCL27 and CCL28 are uniquely involved in the epithelial immunity. CCL27 is expressed predominantly in the skin by keratinocytes while CCL28 is expressed by epithelial cells of various mucosal tissues. CCR10 is expressed by various subsets of innate-like T cells that are programmed to localize to the skin during their developmental processes in the thymus. Circulating T cells might be imprinted by skin-associated antigen- presenting cells to express CCR10 for their recruitment to the skin during the local immune response. On the other hand, IgA antibody-producing B cells generated in mucosa-associated lymphoid tissues express CCR10 for their migration and maintenance at mucosal sites. Increasing evidence also found that CCR10/ligands are involved in regulation of other immune cells in epithelial immunity and are frequently exploited by epithelium-localizing or -originated cancer cells for their survival, proliferation and evasion from immune surveillance. Herein, we review current knowledge on roles of CCR10/ligands in regulation of epithelial immunity and diseases and speculate on related important questions worth further investigation.
Collapse
|