1
|
Jiang S, Fan X, Hua J, Liu S, Feng Y, Shao D, Shen Y, Wang Z, Yan X, Wang J. Integrated metabolomics and network pharmacology analysis to reveal the protective effect of Complanatoside A on nonalcoholic fatty liver disease. Eur J Pharmacol 2024; 985:177074. [PMID: 39481627 DOI: 10.1016/j.ejphar.2024.177074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION The rising prevalence and severe consequences of nonalcoholic fatty liver disease (NAFLD) have driven the quest for preventive medications. Complanatoside A (CA) is the marked flavonoid of Astragali complanati semen, a traditional Chinese herb that acts on the liver meridian and is widely used to treat liver problems. CA has been proven to have considerable lipid-lowering and liver-protective effects in vitro. However, the efficacy of CA in preventing NAFLD has yet to be shown in vivo. METHODS First, the effectiveness of CA against NAFLD was assessed using a high-fat diet (HFD) mouse model. Second, the CA protective mechanism against NAFLD was investigated using a combined metabolomics and network pharmacology strategy. Differential metabolites were identified by metabolomics-based analyses, and metabolic pathway analysis was accomplished by MetaboAnalyst. Potential therapeutic targets were obtained through network pharmacology. Finally, key targets were identified via compound-target networks and validated by molecular docking and western blotting. RESULTS CA prevented NAFLD mainly by reducing liver lipid accumulation in HFD mice. Metabolomics identified 22 potential biomarkers for CA treatment of NAFLD, primarily involving glycerophospholipid and arachidonic acid metabolism. Fifty-one potential targets were determined by network pharmacology. Co-analysis revealed that albumin, peroxisome proliferator-activated receptor-alpha, retinoid X receptor alpha, interleukin-6, and tumor necrosis factor alpha were key targets. CONCLUSION This experiment revealed that CA has a preventive effect on NAFLD, primarily by regulating the peroxisome proliferator-activated receptor-alpha/retinoid X receptor alpha pathway. Furthermore, it provides evidence supporting the potential use of CA in the long-term prevention of NAFLD.
Collapse
Affiliation(s)
- Sijia Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Xiaoxu Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Jian Hua
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Shuangqiao Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Yingtong Feng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Danyue Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Yiwei Shen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Zhen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China
| | - Xuehua Yan
- Institute of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China.
| | - Jingxia Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, China.
| |
Collapse
|
2
|
Mambrini SP, Grillo A, Colosimo S, Zarpellon F, Pozzi G, Furlan D, Amodeo G, Bertoli S. Diet and physical exercise as key players to tackle MASLD through improvement of insulin resistance and metabolic flexibility. Front Nutr 2024; 11:1426551. [PMID: 39229589 PMCID: PMC11370663 DOI: 10.3389/fnut.2024.1426551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) has emerged as a prevalent health concern, encompassing a wide spectrum of liver-related disorders. Insulin resistance, a key pathophysiological feature of MASLD, can be effectively ameliorated through dietary interventions. The Mediterranean diet, rich in whole grains, fruits, vegetables, legumes, and healthy fats, has shown promising results in improving insulin sensitivity. Several components of the Mediterranean diet, such as monounsaturated fats and polyphenols, exert anti-inflammatory and antioxidant effects, thereby reducing hepatic steatosis and inflammation. Furthermore, this dietary pattern has been associated with a higher likelihood of achieving MASLD remission. In addition to dietary modifications, physical exercise, particularly resistance exercise, plays a crucial role in enhancing metabolic flexibility. Resistance exercise training promotes the utilization of fatty acids as an energy source. It enhances muscle glucose uptake and glycogen storage, thus reducing the burden on the liver to uptake excess blood glucose. Furthermore, resistance exercise stimulates muscle protein synthesis, contributing to an improved muscle-to-fat ratio and overall metabolic health. When implemented synergistically, the Mediterranean diet and resistance exercise can elicit complementary effects in combating MASLD. Combined interventions have demonstrated additive benefits, including greater improvements in insulin resistance, increased metabolic flexibility, and enhanced potential for MASLD remission. This underscores the importance of adopting a multifaceted approach encompassing dietary modifications and regular physical exercise to effectively manage MASLD. This narrative review explores the biological mechanisms of diet and physical exercise in addressing MASLD by targeting insulin resistance and decreased metabolic flexibility.
Collapse
Affiliation(s)
- Sara Paola Mambrini
- Nutrition Science Research Lab, Ospedale S. Giuseppe, Istituto Auxologico Italiano IRCCS, Piancavallo, Italy
| | | | - Santo Colosimo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- PhD School of Nutrition Science, University of Milan, Milan, Italy
| | - Francesco Zarpellon
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giorgia Pozzi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Davide Furlan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Simona Bertoli
- Nutrition Science Research Lab, Ospedale S. Giuseppe, Istituto Auxologico Italiano IRCCS, Piancavallo, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
3
|
Mahli A, Thasler WE, Biendl M, Hellerbrand C. Hop-derived Humulinones Reveal Protective Effects in in vitro Models of Hepatic Steatosis, Inflammation and Fibrosis. PLANTA MEDICA 2023; 89:1138-1146. [PMID: 37343573 DOI: 10.1055/a-2103-3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as leading cause of liver disease worldwide. Specific pharmacologic therapy for NAFLD is a major unmet medical need. Recently, iso-alpha acids, hop-derived bitter compounds in beer, have been shown to beneficially affect NAFLD pathology. Humulinones are further hop derived bitter acids particularly found in modern styles of beer. So far, biological effects of humulinones have been unknown. Here, we investigated the effect of humulinones in in vitro models for hepatic steatosis, inflammation and fibrosis. Humulinones dose-dependently inhibited fatty acid induced lipid accumulation in primary human hepatocytes. Humulinones reduced the expression of fatty acid uptake transporter CD36 and key enzymes of (de novo) lipid synthesis. Conversely, humulinones increased the expression of FABP1, CPT1 and ACOX1, indicative for increased lipid combustion. Furthermore, humulinones ameliorated steatosis induced pro-inflammatory gene expression. Furthermore, humulinones significantly reduced the expression of pro-inflammatory and pro-fibrogenic factors in control as well as lipopolysaccharide treated activated hepatic stellate cells, which play a key role in hepatic fibrosis. In conclusion, humulinones beneficially affect different pathophysiological steps of NAFLD. Our data suggest humulinones as promising therapeutic agents for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Abdo Mahli
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Wolfgang E Thasler
- Human Tissue and Cell Research-Services GmbH, Planegg/Martinsried, Germany
| | - Martin Biendl
- Hopsteiner, Hallertauer Hopfenveredelung GmbH, Mainburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). BIOLOGY 2022; 11:biology11050792. [PMID: 35625520 PMCID: PMC9138523 DOI: 10.3390/biology11050792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary In the context of liver disease, one of the more growing public health problems is the transition from simple steatosis to non-alcoholic steatohepatitis. Profound metabolic dysregulations linked to inflammation and hepatic injury are features of non-alcoholic steatohepatitis. Since the peroxisomal-proliferator-activated receptor alpha has long been considered one of the key transcriptional factors in hepatic metabolism, its role in the pathogenesis of non-alcoholic steatohepatitis is discussed in this review. Abstract The strong relationship between metabolic alterations and non-alcoholic steatohepatitis (NASH) suggests a pathogenic interplay. However, many aspects have not yet been fully clarified. Nowadays, NASH is becoming the main cause of liver-associated morbidity and mortality. Therefore, an effort to understand the mechanisms underlying the pathogenesis of NASH is critical. Among the nuclear receptor transcription factors, peroxisome-proliferator-activated receptor alpha (PPARα) is highly expressed in the liver, where it works as a pivotal transcriptional regulator of the intermediary metabolism. In this context, PPARα’s function in regulating the lipid metabolism is essential for proper liver functioning. Here, we review metabolic liver genes under the control of PPARα and discuss how this aspect can impact the inflammatory condition and pathogenesis of NASH.
Collapse
|
5
|
Suh JH, Kim KH, Conner ME, Moore DD, Preidis GA. Hepatic PPARα Is Destabilized by SIRT1 Deacetylase in Undernourished Male Mice. Front Nutr 2022; 9:831879. [PMID: 35419389 PMCID: PMC8997242 DOI: 10.3389/fnut.2022.831879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
The nutrient sensing nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) regulates the host response to short-term fasting by inducing hepatic transcriptional programming of ketogenesis, fatty acid oxidation and transport, and autophagy. This adaptation is ineffective in chronically undernourished individuals, among whom dyslipidemia and hepatic steatosis are common. We recently reported that hepatic PPARα protein is profoundly depleted in male mice undernourished by a low-protein, low-fat diet. Here, we identify PPARα as a deacetylation target of the NAD-dependent deacetylase sirtuin-1 (SIRT1) and link this to the decrease in PPARα protein levels in undernourished liver. Livers from undernourished male mice expressed high levels of SIRT1, with decreased PPARα acetylation and strongly decreased hepatic PPARα protein. In cultured hepatocytes, PPARα protein levels were decreased by transiently transfecting constitutively active SIRT1 or by treating cells with the potent SIRT1 activator resveratrol, while silencing SIRT1 increased PPARα protein levels. SIRT1 expression is correlated with increased PPARα ubiquitination, suggesting that protein loss is due to proteasomal degradation. In accord with these findings, the dramatic loss of hepatic PPARα in undernourished male mice was completely restored by treating mice with the proteasome inhibitor bortezomib. Similarly, treating undernourished mice with the SIRT1 inhibitor selisistat/EX-527 completely restored hepatic PPARα protein. These data suggest that induction of SIRT1 in undernutrition results in hepatic PPARα deacetylation, ubiquitination, and degradation, highlighting a new mechanism that mediates the liver's failed adaptive metabolic responses in chronic undernutrition.
Collapse
Affiliation(s)
- Ji Ho Suh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Department of Education, Innovation and Technology, Baylor College of Medicine, Houston, TX, United States
| | - David D Moore
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, United States
| | - Geoffrey A Preidis
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Lua YH, Ong WW, Wong HK, Chew CH. Ethanol-induced CYP2E1 Expression is Reduced by Lauric Acid via PI3K Pathway in HepG2 Cells. Trop Life Sci Res 2020; 31:63-75. [PMID: 33214856 PMCID: PMC7652244 DOI: 10.21315/tlsr2020.31.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The metabolism of alcohol involves cytochrome P450 2E1 (CYP2E1)-induced oxidative stress, with the association of phosphatidylinositol-3-kinases (PI3K) and nuclear factor kappa B (NFκB) signalling pathways. CYP2E1 is primarily involved in the microsomal ethanol oxidising system, which generates massive reactive oxygen species (ROS) and ultimately leads to oxidative stress and tissue damage. Lauric acid, a major fatty acid in palm kernel oil, has been shown as a potential antioxidant. Here, we aimed to evaluate the use of lauric acid as a potential antioxidant against ethanol-mediated oxidative stress by investigating its effect on CYP2E1 mRNA expression and the signalling pathway in ethanol-induced HepG2 cells. HepG2 cells were firstly treated with different concentrations of ethanol, and subsequently co-treated with different concentrations of lauric acid for 24 h. Total cellular RNA and total protein were extracted, and qPCR and Western blot was carried out. Ethanol induced the mRNA expression of CYP2E1 significantly, but lauric acid was able to downregulate the induced CYP2E1 expression in a dose-dependent manner. Similarly, Western blot analysis and densitometry analysis showed that the phosphorylated PI3K p85 (Tyr458) protein was significantly elevated in ethanol-treated HepG2 cells, but co-treatment with lauric acid repressed the activation of PI3K. However, there was no significant difference in NFκB pathway, in which the normalised NFκB p105 (Ser933) phosphorylation remained constant in any treatment conditions in this study. This suggests that ethanol induced CYP2E1 expression by activating PI3K p85 (Tyr458) pathway, but not the NFκB p105 (Ser933) pathway in HepG2 cells.
Collapse
Affiliation(s)
- Ying-Huan Lua
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Wei-Wah Ong
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Hong-Kin Wong
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Choy-Hoong Chew
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
7
|
Pro-atherogenic proteoglycanase ADAMTS-1 is down-regulated by lauric acid through PI3K and JNK signaling pathways in THP-1 derived macrophages. Mol Biol Rep 2019; 46:2631-2641. [DOI: 10.1007/s11033-019-04661-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023]
|
8
|
Molecular drivers of non-alcoholic steatohepatitis are sustained in mild-to-late fibrosis progression in a guinea pig model. Mol Genet Genomics 2019; 294:649-661. [DOI: 10.1007/s00438-019-01537-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/06/2019] [Indexed: 01/03/2023]
|
9
|
Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci 2017; 188:53-67. [PMID: 28866100 DOI: 10.1016/j.lfs.2017.08.029] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/05/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
Autophagy is an essential cellular mechanism which plays "housekeeping" role in normal physiological processes including removing of long lived, aggregated and misfolded proteins, clearing damaged organelles, growth regulation and aging. Autophagy is also involved in a variety of biological functions like development, cellular differentiation, defense against pathogens and nutritional starvation. The integration of autophagy into these biological functions and other stress responses is determined by the transcriptional factors that undertake the regulatory mechanism. This review discusses the machinery of autophagy, the molecular web that connects autophagy to various stress responses like inflammation, hypoxia, ER stress, and various other pathologic conditions. Defects in autophagy regulation play a central role in number of diseases, including neurodegenerative diseases, cancer, pathogen infection and metabolic diseases. Similarly, inhibiting autophagy would contribute in the treatment of cancer. However, understanding the biology of autophagy regulation requires pharmacologically active compounds which modulate the autophagy process. Inducers of autophagy are currently receiving considerable attention as autophagy upregulation may be a therapeutic benefit for certain neurodegenerative diseases (via removal of protein aggregates) while the inhibitors are being investigated for the treatment of cancers. Both induction and inhibition of autophagy have been proven to be beneficial in the treatment of cancer. This dual role of autophagy in cancers is now getting uncovered by the advancement in the research findings and development of effective autophagy modulators.
Collapse
Affiliation(s)
- Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| | - Ida Florance Srikumar
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| |
Collapse
|
10
|
The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 2017; 136:75-84. [DOI: 10.1016/j.biochi.2016.12.019] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/24/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
|
11
|
Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. ENVIRONMENT INTERNATIONAL 2017; 99:43-54. [PMID: 27871799 DOI: 10.1016/j.envint.2016.11.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
As an emerging persistent organic pollutant (POP), perfluorooctanoate (PFOA) is one of the most abundant perfluorinated compounds (PFCs) in the environment. This review summarized the molecular mechanisms and signaling pathways of PFOA-induced toxicity in animals and humans as well as their implications for health risks in humans. Traditional PFOA-induced signal pathways such as peroxisome proliferating receptor alpha (PPARα), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and pregnane-X receptor (PXR) may not be important for PFOA-induced health effects on humans. Instead, pathways including p53/mitochondrial pathway, nuclear lipid hyperaccumulation, phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT), and tumor necrosis factor-α/nuclear factor κB (TNF-α/NF-κB) may play an important role for PFOA-induced health risks in humans. Both in vivo and in vitro studies are needed to better understand the PFOA-induced toxicity mechanisms as well as the associated health risk in humans.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
12
|
Xiang Z, Xiao S, Wang F, Qin Y, Wu J, Ma H, Li J, Yu Z. Cloning, characterization and comparative analysis of four death receptorTNFRs from the oyster Crassostrea hongkongensis. FISH & SHELLFISH IMMUNOLOGY 2016; 59:288-297. [PMID: 27666188 DOI: 10.1016/j.fsi.2016.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 05/16/2023]
Abstract
Apoptosis plays an important role in homeostasis of the immune systems. The tumor necrosis factor receptors (TNFRs) play critical roles in the extrinsic apoptosis pathways and in determining cell fate. In this study, four death receptors (DR) named ChEDAR, ChTNFR27, ChTNFR5, and ChTNFR16 were identified from the oyster Crassostrea hongkongensis. These ChDRs proteins had 382, 396, 414 and 384 amino acids, respectively, with the typical domains of death receptors, such as the signal peptide (SP), transmembrane helix region (TM) and death domains. Phylogenetic analysis showed that the ChDR proteins clustered into three distinct groups, indicating that these subfamilies had common ancestors. mRNA expression of the ChDRs were detected in all 8 of the selected oyster tissues and at different stages of development. Furthermore, expression of all the genes was increased in the hemocytes of oysters challenged with pathogens or air stress. Fluorescence microscopy revealed that the full-length proteins of the ChDRs were located in the plasma membrane of HEK293T cells. Over-expression of the ChDRs activated the NF-κB-Luc reporter in HEK293T cells in a dose-dependent manner. These results indicate that the ChDRs may play important roles in the extrinsic apoptotic pathways in oysters.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis/immunology
- Base Sequence
- Cloning, Molecular
- Crassostrea/classification
- Crassostrea/genetics
- Crassostrea/immunology
- Crassostrea/microbiology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Developmental
- Immunity, Innate
- Organ Specificity
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Saccharomyces cerevisiae/physiology
- Sequence Alignment
- Signal Transduction
- Staphylococcus haemolyticus/physiology
- Vibrio alginolyticus/physiology
Collapse
Affiliation(s)
- Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Shu Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Fuxuan Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yanping Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Haitao Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
13
|
Eicosapentaenoic acid-containing phosphatidylcholine alleviated lipid accumulation in orotic acid-induced non-alcoholic fatty liver. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
14
|
Han Y, Zheng G, Yang T, Zhang S, Dong D, Pan YH. Adaptation of peroxisome proliferator-activated receptor alpha to hibernation in bats. BMC Evol Biol 2015; 15:88. [PMID: 25980933 PMCID: PMC4435907 DOI: 10.1186/s12862-015-0373-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/29/2015] [Indexed: 01/28/2023] Open
Abstract
Background Hibernation is a survival mechanism in the winter for some animals. Fat preserved instead of glucose produced is the primary fuel during winter hibernation of mammals. Many genes involved in lipid metabolism are regulated by the peroxisome proliferator-activated receptor alpha (PPARα). The role of PPARα in hibernation of mammals remains largely unknown. Using a multidisciplinary approach, we investigated whether PPARα is adapted to hibernation in bats. Results Evolutionary analyses revealed that the ω value of Pparα of the ancestral lineage of hibernating bats in both Yinpterochiroptera and Yangochiroptera was lower than that of non-hibernating bats in Yinpterochiroptera, suggesting that a higher selective pressure acts on Pparα in hibernating bats. PPARα expression was found to be increased at both mRNA and protein levels in distantly related bats (Rhinolophus ferrumequinum and Hipposideros armiger in Yinpterochiroptera and Myotis ricketti in Yangochiroptera) during their torpid episodes. Transcription factors such as FOXL1, NFYA, NFYB, SP1, TBP, and ERG were bioinformatically determined to have a higher binding affinity to the potential regulatory regions of Pparα in hibernating than in non-hibernating mammals. Genome-wide bioinformatic analyses of 64 mammalian species showed that PPARα has more potential target genes and higher binding affinity to these genes in hibernating than in non-hibernating mammals. Conclusions We conclude that PPARα is adapted to hibernation in bats based on the observations that Pparα has a more stringent functional constraint in the ancestral lineage of hibernating bats and a higher level of expression in hibernating than in non-hibernating bats. We also conclude that PPARα plays a very important role in hibernation as hibernators have more PPARα target genes than non-hibernators, and PPARα in hibernators has a higher binding affinity for its target genes than in non-hibernators. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0373-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yijie Han
- Laboratory of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, 200062, China.
| | - Guantao Zheng
- Laboratory of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, 200062, China.
| | - Tianxiao Yang
- Laboratory of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, 200062, China.
| | - Shuyi Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Dong Dong
- Laboratory of Molecular Ecology and Evolution, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Yi-Hsuan Pan
- Laboratory of Molecular Ecology and Evolution, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
15
|
Zhao Y, Peng L, Lu W, Wang Y, Huang X, Gong C, He L, Hong J, Wu S, Jin X. Effect of Eclipta prostrata on lipid metabolism in hyperlipidemic animals. Exp Gerontol 2015; 62:37-44. [DOI: 10.1016/j.exger.2014.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/26/2014] [Accepted: 12/30/2014] [Indexed: 11/30/2022]
|
16
|
Proteomic analysis identifies an NADPH oxidase 1 (Nox1)-mediated role for actin-related protein 2/3 complex subunit 2 (ARPC2) in promoting smooth muscle cell migration. Int J Mol Sci 2013; 14:20220-35. [PMID: 24152438 PMCID: PMC3821612 DOI: 10.3390/ijms141020220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 11/20/2022] Open
Abstract
A variety of vascular pathologies, including hypertension, restenosis and atherosclerosis, are characterized by vascular smooth muscle cell (VSMC) hypertrophy and migration. NADPH oxidase 1 (Nox1) plays a pivotal role in these phenotypes via distinct downstream signaling. However, the mediators differentiating these distinct phenotypes and their precise role in vascular disease are still not clear. The present study was designed to identify novel targets of VSMC Nox1 signaling using 2D Differential In-Gel Electrophoresis and Mass Spectrometry (2D-DIGE/MS). VSMC treatment with scrambled (Scrmb) or Nox1 siRNA and incubation with the oxidant hydrogen peroxide (H2O2; 50 μM, 3 h) followed by 2D-DIGE/MS on cell lysates identified 10 target proteins. Among these proteins, actin-related protein 2/3 complex subunit 2 (ARPC2) with no previous link to Nox isozymes, H2O2, or other reactive oxygen species (ROS), was identified and postulated to play an intermediary role in VSMC migration. Western blot confirmed that Nox1 mediates H2O2-induced ARPC2 expression in VSMC. Treatment with a p38 MAPK inhibitor (SB203580) resulted in reduced ARPC2 expression in H2O2-treated VSMC. Additionally, wound-healing “scratch” assay confirmed that H2O2 stimulates VSMC migration via Nox1. Importantly, gene silencing of ARPC2 suppressed H2O2-stimulated VSMC migration. These results demonstrate for the first time that Nox1-mediated VSMC migration involves ARPC2 as a downstream signaling target.
Collapse
|
17
|
Metabolic factors and chronic hepatitis C: a complex interplay. BIOMED RESEARCH INTERNATIONAL 2013; 2013:564645. [PMID: 23956991 PMCID: PMC3730187 DOI: 10.1155/2013/564645] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/29/2013] [Indexed: 12/15/2022]
Abstract
In the last years, several lines of evidence showed how metabolic factors may influence the natural history of patients with chronic hepatitis C. Chronic HCV infection is able to perturb the metabolic homeostasis of the host, in a context of complex interactions where pre-existent metabolic status and genetic background play an important role, allowing us to state that HCV infection is a systemic disease. In this review, we discuss the most recent lines of evidence on the main metabolic factors that are known to be associated with CHC, namely, insulin resistance/type 2 diabetes, steatosis, visceral obesity, atherosclerosis, vitamin D, menopause, fructose and coffee intake, lipoproteins, methylenetetrahydrofolate reductase status, and hyperuricaemia. In particular, we focus on the pathophysiological mechanisms underlying the correlation between HCV infection and metabolic disorders, the impact of metabolic factors on the progression of liver and non-liver-related diseases, and, on the contrary, the possible influence of chronic HCV infection on metabolic features. In this setting, the importance of a multifaceted evaluation of CHC patients and a prompt correction of modifiable metabolic risk factors should be emphasized.
Collapse
|
18
|
Wedelolactone exhibits anti-fibrotic effects on human hepatic stellate cell line LX-2. Eur J Pharmacol 2013; 714:105-11. [PMID: 23791612 DOI: 10.1016/j.ejphar.2013.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 01/07/2023]
Abstract
Wedelolactone is a major coumarin of Eclipta prostrata, which is used for preventing liver damage. However the effects of wedelolactone on hepatic fibrosis remained unexplored. The purpose of this study was to demonstrate the anti-fibrotic effects of wedelolactone on activated human hepatic stellate cell (HSC) line LX-2 and the possible underlying mechanisms by means of MTT assay, Hoechst staining, as well as real-time quantitative PCR and western blot. The results showed that wedelolactone reduced the cellular viability of LX-2 in a time and dose-dependent manner. After treatment of wedelolactone, the expressions of collagen I and α-smooth muscle actin, two biomarkers of LX-2 activation, were remarkably decreased. The apoptosis of LX-2 cells was induced by wedelolactone accompanied with the decreasing expression of anti-apoptotic Bcl-2 and increasing expression of pro-apoptotic Bax. In addition, phosphorylated status of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was up-regulated, but not in p38. Moreover, wedelolactone significantly repressed the level of phosphorylated inhibitor of nuclear factor κB (IκB) and p65 in nucleus in spite of tumor necrosis factor-α stimulation. In conclusion, wedelolactone could significantly inhibit the activation of LX-2 cells, the underlying mechanisms of which included inducing Bcl-2 family involved apoptosis, up-regulating phosphorylated status of ERK and JNK expressions, and inhibiting nuclear factor-κB (NF-κB) mediated activity. Wedelolactone might present as a useful tool for the prevention and treatment of hepatic fibrosis.
Collapse
|