1
|
Ma D, Feng Y, Lin X. Immune and non-immune mediators in the fibrosis pathogenesis of salivary gland in Sjögren's syndrome. Front Immunol 2024; 15:1421436. [PMID: 39469708 PMCID: PMC11513355 DOI: 10.3389/fimmu.2024.1421436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sjögren's syndrome (SS) or Sjögren's disease (SjD) is a systemic autoimmune disease clinically manifested as sicca symptoms. This disease primarily impacts the functionality of exocrine glands, specifically the lacrimal and salivary glands (SG). SG fibrosis, an irreversible morphological change, is a severe consequence that occurs in the later stages of the disease due to sustained inflammation. However, the mechanism underlying SG fibrosis in SS remains under-investigated. Glandular fibrosis may arise from chronic sialadenitis, in which the interactions between infiltrating lymphocytes and epithelial cells potentially contributes to fibrotic pathogenesis. Thus, both immune and non-immune cells are closely involved in this process, while their interplays are not fully understood. The molecular mechanism of tissue fibrosis is partly associated with an imbalance of immune responses, in which the transforming growth factor-beta (TGF-β)-dependent epithelial-mesenchymal transition (EMT) and extracellular matrix remodeling are recently investigated. In addition, viral infection has been implicated in the pathogenesis of SS. Viral-specific innate immune response could exacerbate the autoimmune progression, resulting in overt inflammation in SG. Notably, post-COVID patients exhibit typical SS symptoms and severe inflammatory sialadenitis, which are positively correlated with SG damage. In this review, we discuss the immune and non-immune risk factors in SG fibrosis and summarize the evidence to understand the mechanisms upon autoimmune progression in SS.
Collapse
Affiliation(s)
- Danbao Ma
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
2
|
Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, Pan HF. Interleukin-13: A promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev 2018; 45:9-23. [PMID: 30581068 DOI: 10.1016/j.cytogfr.2018.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Interleukin-13 (IL-13) was previously thought to be a redundant presence of IL-4, but in recent years its role in immunity, inflammation, fibrosis, and allergic diseases has become increasingly prominent. IL-13 can regulate several subtypes of T helper (Th) cells and affect their transformation, including Th1, Th2, T17, etc., thus it may play an important role in immune system. Previous studies have revealed that IL-13 is implicated in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), ulcerative colitis (UC), type 1 diabetes (T1D), sjogren's syndrome (SS), etc. In this review, we will briefly discuss the biological features of IL-13 and summarize recent advances in the role of IL-13 in the development and pathogenesis of autoimmune diseases. This information may provide new perspectives and suggestions for the selection of therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jing Leng
- Anhui Academy of Medical Sciences, 15 Yonghong Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
3
|
Zhang B, Jiao A, Dai M, Wiest DL, Zhuang Y. Id3 Restricts γδ NKT Cell Expansion by Controlling Egr2 and c-Myc Activity. THE JOURNAL OF IMMUNOLOGY 2018; 201:1452-1459. [PMID: 30012846 DOI: 10.4049/jimmunol.1800106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
Abstract
γδ NKT cells are neonatal-derived γδ T lymphocytes that are grouped together with invariant NKT cells based on their shared innate-like developmental program characterized by the transcription factor PLZF (promyelocytic leukemia zinc finger). Previous studies have demonstrated that the population size of γδ NKT cells is tightly controlled by Id3-mediated inhibition of E-protein activity in mice. However, how E proteins promote γδ NKT cell development and expansion remains to be determined. In this study, we report that the transcription factor Egr2, which also activates PLZF expression in invariant NKT cells, is essential for regulating γδ NKT cell expansion. We observed a higher expression of Egr family genes in γδ NKT cells compared with the conventional γδ T cell population. Loss of function of Id3 caused an expansion of γδ NKT cells, which is accompanied by further upregulation of Egr family genes as well as PLZF. Deletion of Egr2 in Id3-deficient γδ NKT cells prevented cell expansion and blocked PLZF upregulation. We further show that this Egr2-mediated γδ NKT cell expansion is dependent on c-Myc. c-Myc knockdown attenuated the proliferation of Id3-deficient γδ NKT cells, whereas c-Myc overexpression enhanced the proliferation of Id3/Egr2-double-deficient γδ NKT cells. Therefore, our data reveal a regulatory circuit involving Egr2-Id3-E2A, which normally restricts the population size of γδ NKT cells by adjusting Egr2 dosage and c-Myc expression.
Collapse
Affiliation(s)
- Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China; .,Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China
| | - Meifang Dai
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| |
Collapse
|
4
|
Zhou J, Yu Q. Anti-IL-7 receptor-α treatment ameliorates newly established Sjögren's-like exocrinopathy in non-obese diabetic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2438-2447. [PMID: 29680668 DOI: 10.1016/j.bbadis.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022]
Abstract
The levels of interleukin (IL)-7 and its receptor are elevated in the salivary glands of patients with Sjögren's syndrome (SS). Our previous study indicates that IL-7 plays a critical pathogenic role in the development and onset of SS in a mouse model of this disease. The present study aims at determining whether IL-7 also plays a role in sustaining SS pathologies after the disease onset, by using the non-obese diabetic (NOD) model. Intraperitoneal administration of a blocking antibody against the IL-7 receptor α chain (IL-7Rα) to female NOD mice aged 10 weeks, which exhibited newly onset clinical SS, for the duration of 3 weeks significantly ameliorated characteristic SS pathologies including hyposalivation and leukocyte infiltration of the submandibular glands (SMGs). These changes were accompanied by a decrease in IFN-γ-producing CD4 T- and CD8 T cells, B cells, and lymphocyte chemoattractants CXCL9, -10, -11 and -13 in the SMGs. Anti-IL-7Rα treatment markedly diminished the amount of TNF-α in the SMGs and increased the level of claudin-1 and aquaporin 5, two molecules critical for normal salivary secretion. Furthermore, neutralization of IFN-γ and TNF-α, individually or in combination, considerably improved salivary secretion, reduced leukocyte infiltration and down-regulated CXCL9 and -13 expression in the SMGs. Collectively, the results indicate that endogenous IL-7R signals promote Th1 and Tc1 responses and IFN-γ- and TNF-α production to sustain the persistence of SS-like sialadenitis in NOD mice. These findings suggest that IL-7 and Th1 cytokines could serve as promising therapeutic targets for this prevalent autoimmune disease.
Collapse
Affiliation(s)
- Jing Zhou
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115
| | - Qing Yu
- The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115..
| |
Collapse
|
5
|
Roy S, Moore AJ, Love C, Reddy A, Rajagopalan D, Dave SS, Li L, Murre C, Zhuang Y. Id Proteins Suppress E2A-Driven Invariant Natural Killer T Cell Development prior to TCR Selection. Front Immunol 2018; 9:42. [PMID: 29416542 PMCID: PMC5787561 DOI: 10.3389/fimmu.2018.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023] Open
Abstract
A family of transcription factors known as E proteins, and their antagonists, Id proteins, regulate T cell differentiation at critical developmental checkpoints. Id proteins promote the differentiation of conventional αβ T cells and suppress the expansion of innate-like αβ T cells known as invariant natural killer T (iNKT) cells. However, it remains to be determined whether Id proteins differentially regulate these distinct lineage choices in early stages of T cell development. In this manuscript, we report that in Id-deficient mice, uninhibited activity of the E protein family member E2A mediates activation of genes that support iNKT cell development and function. There is also biased rearrangement in Id-deficient DP cells that promotes selection into the iNKT lineage in these mice. The observed expansion of iNKT cells is not abrogated by blocking pre-TCR signaling, which is required for conventional αβ T cell development. Finally, E2A is found to be a key transcriptional regulator of both iNKT and γδNKT lineages, which appear to have shared lineage history. Therefore, our study reveals a previously unappreciated role of E2A in coordinating the development of the iNKT lineage at an early stage, prior to their TCR-mediated selection alongside conventional αβ T cells.
Collapse
Affiliation(s)
- Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Amanda J Moore
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, United States
| | - Cassandra Love
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC, United States
| | - Anupama Reddy
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC, United States
| | - Deepthi Rajagopalan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC, United States
| | - Sandeep S Dave
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC, United States
| | - Leping Li
- Biostatistics and Computational Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Durham, NC, United States
| | - Cornelis Murre
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, United States
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
6
|
Li J, Roy S, Kim YM, Li S, Zhang B, Love C, Reddy A, Rajagopalan D, Dave S, Diehl AM, Zhuang Y. Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3136-3148. [PMID: 28258199 DOI: 10.4049/jimmunol.1601935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
Inhibitor of DNA binding (Id) proteins, including Id1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins is associated with a broad spectrum of tumors, recent studies have identified that Id3 plays a tumor-suppressor role in the development of Burkitt's lymphoma in humans and hepatosplenic T cell lymphomas in mice. In this article, we report rapid lymphoma development in Id2/Id3 double-knockout mice that is caused by unchecked expansion of invariant NKT (iNKT) cells or a unique subset of innate-like CD1d-independent T cells. These populations began to expand in neonatal mice and, upon malignant transformation, resulted in mortality between 3 and 11 mo of age. The malignant cells also gave rise to lymphomas upon transfer to Rag-deficient and wild-type hosts, reaffirming their inherent tumorigenic potential. Microarray analysis revealed a significantly modified program in these neonatal iNKT cells that ultimately led to their malignant transformation. The lymphoma cells demonstrated chromosome instability along with upregulation of several signaling pathways, including the cytokine-cytokine receptor interaction pathway, which can promote their expansion and migration. Dysregulation of genes with reported driver mutations and the NF-κB pathway were found to be shared between Id2/Id3 double-knockout lymphomas and human NKT tumors. Our work identifies a distinct premalignant state and multiple tumorigenic pathways caused by loss of function of Id2 and Id3. Thus, conditional deletion of Id2 and Id3 in developing T cells establishes a unique animal model for iNKT and relevant innate-like lymphomas.
Collapse
Affiliation(s)
- Jia Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Young-Mi Kim
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Shibo Li
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Cassandra Love
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anupama Reddy
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Deepthi Rajagopalan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Sandeep Dave
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
7
|
Li X, Yu D, Yu N, Wang X, Li X, Harris DCH, Wang Y. B7-H4 deficiency in salivary gland of patients with primary Sjögren's syndrome impairs the regulatory effect on T cells. Int J Rheum Dis 2017; 20:474-480. [PMID: 28217953 DOI: 10.1111/1756-185x.13041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AIM Our previous study confirmed the defect of B7-H4 expression in peripheral blood and salivary glands of patients with primary Sjögren's syndrome (pSS). The aim of this study was to analyze the effect of the deficit expression of B7-H4 on CD4+ T cells. METHODS CD4+ T cells were purified by magnetic-activated cell sorting MACS. The proliferation and cytokine production of CD4+ T cells co-cultured with purified salivary gland epithelial cells (SGECs) from pSS or non-SS sicca syndrome were detected. RESULTS By co-culturing the gland cells with CD4+ T cells, we found the proliferation of CD4+ T cells was significantly suppressed. The effect was weaker when SGECs from pSS patients were used compared to that from non-pSS sicca syndrome controls. Simultaneously, the productions of cytokines interleukin (IL)-5, IL-13, IL-17A, IL-6 in supernatant were reduced and also SGECs from pSS patients decreased them less than that from non-SS controls. CONCLUSIONS The decrease of B7-H4 expression in salivary glands of SS patients contributes to the defect of negatively regulating the inflammation caused by CD4+ T cells, thereby providing new insights into the role of B7-H4 in the inflammatory process of salivary glands in SS.
Collapse
Affiliation(s)
- Xiaomei Li
- Department of Rheumatology and Immunology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui
| | - Daliang Yu
- Department of Rheumatology and Immunology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui.,Department of Nephrology, Renmin Hospital of Three Gorges University, Yichang, China
| | - Ning Yu
- Department of Rheumatology and Immunology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui
| | - Ximei Wang
- Department of Rheumatology and Immunology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui
| | - Xiangpei Li
- Department of Rheumatology and Immunology, Affiliated Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui
| | - David C H Harris
- Centre for Transplantation and Renal Research, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Hospital, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|