1
|
Tews HC, Elger T, Grewal T, Weidlich S, Vitali F, Buechler C. Fecal and Urinary Adipokines as Disease Biomarkers. Biomedicines 2023; 11:biomedicines11041186. [PMID: 37189804 DOI: 10.3390/biomedicines11041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The use of biomarkers is of great clinical value for the diagnosis and prognosis of disease and the assessment of treatment efficacy. In this context, adipokines secreted from adipose tissue are of interest, as their elevated circulating levels are associated with a range of metabolic dysfunctions, inflammation, renal and hepatic diseases and cancers. In addition to serum, adipokines can also be detected in the urine and feces, and current experimental evidence on the analysis of fecal and urinary adipokine levels points to their potential as disease biomarkers. This includes increased urinary adiponectin, lipocalin-2, leptin and interleukin-6 (IL-6) levels in renal diseases and an association of elevated urinary chemerin as well as urinary and fecal lipocalin-2 levels with active inflammatory bowel diseases. Urinary IL-6 levels are also upregulated in rheumatoid arthritis and may become an early marker for kidney transplant rejection, while fecal IL-6 levels are increased in decompensated liver cirrhosis and acute gastroenteritis. In addition, galectin-3 levels in urine and stool may emerge as a biomarker for several cancers. With the analysis of urine and feces from patients being cost-efficient and non-invasive, the identification and utilization of adipokine levels as urinary and fecal biomarkers could become a great advantage for disease diagnosis and predicting treatment outcomes. This review article highlights data on the abundance of selected adipokines in urine and feces, underscoring their potential to serve as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Hauke C Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Francesco Vitali
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Chen J, Lei S, Huang Y, Zha X, Gu L, Zhou D, Li J, Liu F, Li N, Du L, Huang X, Lin Z, Bu L, Qu S. The relationship between Lipocalin-2 level and hepatic steatosis in obese patients with NAFLD after bariatric surgery. Lipids Health Dis 2022; 21:10. [PMID: 35034646 PMCID: PMC8761269 DOI: 10.1186/s12944-022-01622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipocalin-2 (LCN2) has a critical effect on obesity as well as its associated comorbidities. The present study focused on analyzing serum LCN2 levels of obese patients with nonalcoholic fatty liver disease (NAFLD) and on determining relationship of hepatic steatosis improvement with LCN2 levels after laparoscopic sleeve gastrectomy (LSG). METHODS This work enrolled ninety patients with obesity and NAFLD. Twenty-three of them underwent LSG. Anthropometric and biochemical parameters and serum LCN2 levels were determined at baseline and those at 6-month post-LSG. Controlled attenuation parameter (CAP) measured by FibroScan was adopted for evaluating hepatic steatosis. RESULTS Among severe obesity patients, serum LCN2 levels were significantly increased (111.59 ± 51.16 ng/mL vs. 92.68 ± 32.68 ng/mL, P = 0.035). The CAP value was higher indicating higher liver fat content (360.51 ± 45.14 dB/m vs. 340.78 ± 45.02 dB/m, P = 0.044). With regard to surgical patients, liver function, glucose, and lipid levels were significantly improved after surgery. Serum LCN2 levels significantly decreased (119.74 ± 36.15 ng/mL vs. 87.38 ± 51.65 ng/mL, P = 0.001). Decreased CAP indicated a significant decrease in liver fat content (358.48 ± 46.13 dB/m vs. 260.83 ± 69.64 dB/m, P < 0.001). The decrease in LCN2 levels was significantly related to the reduced hepatic fat content and improvement in steatosis grade after adjusting for gender, age, and BMI decrease. CONCLUSIONS Serum LCN2 levels are related to obesity and NAFLD. The decreased serum LCN2 levels could be an indicator of hepatic steatosis improvement.
Collapse
Affiliation(s)
- Jiaqi Chen
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China ,grid.440227.70000 0004 1758 3572Department of Endocrinology and Metabolism, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shihui Lei
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Yueye Huang
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Xiaojuan Zha
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Lei Gu
- grid.24516.340000000123704535Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Donglei Zhou
- grid.24516.340000000123704535Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- grid.24516.340000000123704535Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liu
- grid.24516.340000000123704535Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nannan Li
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Lei Du
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Xiu Huang
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Ziwei Lin
- grid.24516.340000000123704535Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 200072 Shanghai, China
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Clinical Medicine School of Nanjing Medical University, Medicine School of Tongji University, Shanghai, 200072, China.
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Clinical Medicine School of Nanjing Medical University, Medicine School of Tongji University, Shanghai, 200072, China.
| |
Collapse
|
3
|
Borkham-Kamphorst E, Haas U, Pinoé-Schmidt M, Abdallah AT, Weiskirchen R. Chronic mineral oil administration increases hepatic inflammation in wild type mice compared to lipocalin 2 null mice. J Transl Med 2021; 101:1528-1539. [PMID: 34518636 PMCID: PMC8590977 DOI: 10.1038/s41374-021-00672-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022] Open
Abstract
Lipocalin 2 (LCN2), an acute-phase protein produced during acute liver injury, plays an important role in the innate immune response against bacterial infection via iron scavenging. LCN2 further influences neutrophil development and physiology leading to increased inflammatory responses. We investigated the roles of LCN2 in chronic inflammation and fibrosis, using repeated carbon tetrachloride (CCl4) in mineral-oil injection. Surprisingly, mice treated with the mineral oil vehicle alone showed liver inflammation, evidenced by neutrophil and monocyte-macrophage infiltration. Fluorescence-activated cell sorting (FACS) of isolated liver leukocytes showed significantly high CD45+ leukocyte concentrations in CCl4 mice, but no difference of Ly6G+ neutrophils between mineral oil and CCl4 application. Liver CD11b+ F4/80+ cells counted higher in CCl4 mice, but the proportions of Gr1high, an indicator of inflammation, were significantly higher in mineral oil groups. Liver myeloperoxidase (MPO), expressed in neutrophils and monocytes, showed higher levels in wild type mice compared to Lcn2-/- in both mineral-oil and CCl4 treated groups. Hepatic and serum LCN2 levels were remarkably higher in the mineral oil-injected wild type group compared to the CCl4. Wild type animals receiving mineral oil showed significantly higher inflammatory cytokine- and chemokine mRNA levels compared to Lcn2-/- mice, with no differences in the CCl4 treated groups. RNA sequencing (RNA-Seq) confirmed significant downregulation of gene sets involved in myeloid cell activation and immune responses in Lcn2 null mice receiving chronic mineral oil versus wild-type. We observed significant upregulation of gene sets and proteins involved in cell cycle DNA replication, with downregulation of collagen-containing extracellular matrix genes in Lcn2-/- mice receiving CCl4, compared to the wild type. Consequently, the wild type mice developed slightly more liver fibrosis compared to Lcn2-/- mice, evidenced by higher levels of collagen type I in the CCl4 groups and no liver fibrosis in mineral oil-treated mice. Our findings indicate that serum and hepatic LCN2 levels correlate with hepatic inflammation rather than fibrosis.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany.
| | - Ute Haas
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Manuela Pinoé-Schmidt
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research, University Hospital RWTH, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
4
|
Mondal A, Saha P, Bose D, Chatterjee S, Seth RK, Xiao S, Porter DE, Brooks BW, Scott GI, Nagarkatti M, Nagarkatti P, Chatterjee S. Environmental Microcystin exposure in underlying NAFLD-induced exacerbation of neuroinflammation, blood-brain barrier dysfunction, and neurodegeneration are NLRP3 and S100B dependent. Toxicology 2021; 461:152901. [PMID: 34416350 DOI: 10.1016/j.tox.2021.152901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been shown to be associated with extrahepatic comorbidities including neuronal inflammation and Alzheimer's-like pathology. Environmental and genetic factors also act as a second hit to modulate severity and are expected to enhance the NAFLD-linked neuropathology. We hypothezied that environmental microcystin-LR (MC-LR), a toxin produced by harmful algal blooms of cyanobacteria, exacerbates the neuroinflammation and degeneration of neurons associated with NAFLD. Using a mouse model of NAFLD, exposed to MC-LR subsequent to the onset of fatty liver, we show that the cyanotoxin could significantly increase proinflammatory cytokine expression in the frontal cortex and cause increased expression of Lcn2 and HMGB1. The above effects were NLRP3 inflammasome activation-dependent since the use of NLRP3 knockout mice abrogated the increase in inflammation. NLRP3 was also responsible for decreased expression of the blood-brain barrier (BBB) tight junction proteins Occludin and Claudin 5 suggesting BBB dysfunction was parallel to neuroinflammation following microcystin exposure. An increased circulatory S100B release, a hallmark of astrocyte activation in MC-LR exposed NAFLD mice also confirmed BBB integrity loss, but the astrocyte activation observed in vivo was NLRP3 independent suggesting an important role of a secondary S100B mediated crosstalk. Mechanistically, conditioned medium from reactive astrocytes and parallel S100B incubation in neuronal cells caused increased inducible NOS, COX-2, and higher BAX/ Bcl2 protein expression suggesting oxidative stress-mediated neuronal cell apoptosis crucial for neurodegeneration. Taken together, MC-LR exacerbated neuronal NAFLD-linked comorbidities leading to cortical inflammation, BBB dysfunction, and neuronal apoptosis.
Collapse
Affiliation(s)
- Ayan Mondal
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Somdatta Chatterjee
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy at Rutgers University, Piscataway, NJ, 08854, USA
| | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, 29208, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76798-7266, USA
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, University of South Carolina, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA; Columbia VA Medical Center, Columbia, SC, 29209, USA.
| |
Collapse
|
5
|
Lipocalin 2 as a potential systemic biomarker for central serous chorioretinopathy. Sci Rep 2020; 10:20175. [PMID: 33214636 PMCID: PMC7677530 DOI: 10.1038/s41598-020-77202-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
No systemic biomarker of Central Serous Chorioretinopathy (CSCR) has been identified. Lipocalin 2 (LCN2 or NGAL), alone or complexed with MMP-9 (NGAL/MMP-9), is increased in several retinal disorders. Serum levels of LCN2 and NGAL/MMP-9 were measured in CSCR patients (n = 147) with chronic (n = 76) or acute/recurrent disease (n = 71) and in age- and sex-matched healthy controls (n = 130). Samples with CRP > 5 mg/L, creatinine > 100 µmol/L, and/or urea > 7.5 mmol/L were excluded. Serum LCN2 was lower in CSCR patients than controls (81.4 ± 48.7 vs 107.3 ± 44.5 ng/ml, p < 0.0001), and lower in acute/recurrent CSCR than controls (p < 0.001) and chronic CSCR (p = 0.006). Serum NGAL/MMP-9 was lower in CSCR patients than controls (47.2 ± 40.7 vs 74.1 ± 42.6, p < 0.0001), and lower in acute/recurrent CSCR than controls (p < 0.001) and chronic CSCR (p = 0.002). A ROC curve showed that for LCN2 serum levels, the 80-ng/ml cutoff value allows to discriminate acute/recurrent CSCR from controls with 80.3% sensitivity and 75.8% specificity, and for NGAL/MMP-9 serum levels, a 38-ng/ml cutoff value allows to discriminate acute/recurrent CSCR from controls with 69.6% sensitivity and 80.3% specificity. In both acute and chronic CSCR, low serum LCN2 and NGAL/MMP-9, provide a biological link between the two CSCR forms, and potential susceptibility to oxidative stress and innate immune dysregulation in CSCR.
Collapse
|
6
|
Mondal A, Bose D, Saha P, Sarkar S, Seth R, Kimono D, Albadrani M, Nagarkatti M, Nagarkatti P, Chatterjee S. Lipocalin 2 induces neuroinflammation and blood-brain barrier dysfunction through liver-brain axis in murine model of nonalcoholic steatohepatitis. J Neuroinflammation 2020; 17:201. [PMID: 32622362 PMCID: PMC7335438 DOI: 10.1186/s12974-020-01876-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent clinical and basic research implicated a strong correlation between NAFLD/NASH phenotypes with ectopic manifestations including neuroinflammation and neurodegeneration, but the mediators and critical pathways involved are not well understood. Lipocalin 2 (Lcn2) is one of the important mediators exclusively produced in the liver and circulation during NASH pathology. METHODS Using murine model of NASH, we studied the role of Lcn2 as a potent mediator of neuroinflammation and neurodegeneration in NASH pathology via the liver-brain axis. RESULTS Results showed that high circulatory Lcn2 activated 24p3R (Lipocalin2 receptor) in the brain and induced the release of high mobility group box 1 (HMGB1) preferably from brain cells. Released HMGB1 acted as a preferential ligand to toll-like receptor 4 (TLR4) and induced oxidative stress by activation of NOX-2 signaling involving activated p65 protein of the NF-κB complex. Further, the HMGB1-derived downstream signaling cascade activated NLRP3 inflammasome and release of proinflammatory cytokines IL-6 and IL-1β from brain cells. In addition, to advance our present understanding, in vitro studies were performed in primary brain endothelial cells where results showed high circulatory Lcn2 influenced HMGB1 secretion. Mechanistically, we also showed that elevated Lcn2 level in underlying NASH might be a likely cause for induction of blood-brain barrier dysfunction since the adipokine decreased the expression of tight junction protein Claudin 5 and caused subsequent elevation of pro-inflammatory cytokines IL-6 and IL-1β. CONCLUSION In conclusion, the NASH-induced brain pathology might be because of increased Lcn2-induced release of HMGB1 and accompanying neuroinflammation.
Collapse
Affiliation(s)
- Ayan Mondal
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Sutapa Sarkar
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ratanesh Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Diana Kimono
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Muayad Albadrani
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Prakash Nagarkatti
- Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
7
|
Stephens JM, Bailey JL, Hang H, Rittell V, Dietrich MA, Mynatt RL, Elks CM. Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyte-Specific Oncostatin Receptor Knockout Mice. Obesity (Silver Spring) 2018; 26:1439-1447. [PMID: 30226002 PMCID: PMC6146404 DOI: 10.1002/oby.22254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This study examined the phenotypic effects of adipocyte-specific oncostatin M receptor (OSMR) loss in chow-fed mice. METHODS Chow-fed adipocyte-specific OSMR knockout (FKO) mice and littermate OSMRfl/fl controls were studied. Tissue weights, insulin sensitivity, adipokine production, and stromal cell immunophenotypes were assessed in epididymal fat (eWAT); serum adipokine production was also assessed. In vitro, adipocytes were treated with oncostatin M, and adipokine gene expression was assessed. RESULTS Body weights, fasting blood glucose levels, and eWAT weights did not differ between genotypes. However, the eWAT of OSMRFKO mice was modestly less responsive to insulin stimulation than that of OSMRfl/fl mice. Notably, significant increases in adipokines, including C-reactive protein, lipocalin 2, intercellular adhesion molecule-1, and insulinlike growth factor binding protein 6, were observed in the eWAT of OSMRFKO mice. In addition, significant increases in fetuin A and intercellular adhesion molecule-1 were detected in OSMRFKO serum. Flow cytometry revealed a significant increase in leukocyte number and modest, but not statistically significant, increases in B cells and T cells in the eWAT of OSMRFKO mice. CONCLUSIONS The chow-fed OSMRFKO mice exhibited adipose tissue dysfunction and increased proinflammatory adipokine production. These results suggest that intact adipocyte oncostatin M-OSMR signaling is necessary for adipose tissue immune cell homeostasis.
Collapse
Affiliation(s)
- Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808
| | - Jennifer L. Bailey
- Matrix Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808
| | - Hardy Hang
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808
| | - Victoria Rittell
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808
- Matrix Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808
| | - Marilyn A. Dietrich
- Cell Biology and Bioimaging Core, Pennington Biomedical Research Center, Baton Rouge, LA, 70808
| | - Randall L. Mynatt
- Transgenics Core, Pennington Biomedical Research Center, Baton Rouge, LA, 70808
| | - Carrie M. Elks
- Matrix Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808
- Corresponding Author: Carrie M. Elks, PhD, RD, Matrix Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA, Phone: (225) 763-3140,
| |
Collapse
|
8
|
Moschen AR, Adolph TE, Gerner RR, Wieser V, Tilg H. Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends Endocrinol Metab 2017; 28:388-397. [PMID: 28214071 DOI: 10.1016/j.tem.2017.01.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
Lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin (NGAL), is released by various cell types and is an attractive biomarker of inflammation, ischemia, infection, and kidney damage. Both intestinal and metabolic inflammation, as observed in obesity and related disorders, are associated with increased LCN2 synthesis. While LCN2 in the intestinal tract regulates the composition of the gut microbiota and shows anti-inflammatory activities, it also exhibits proinflammatory activities in other experimental settings. In animal models of metabolic inflammation, type 2 diabetes mellitus (T2DM), or nonalcoholic steatohepatitis (NASH), increased LCN2 expression favors inflammation via the recruitment of inflammatory cells, such as neutrophils, and the induction of proinflammatory cytokines. A better understanding of this crucial marker of innate immunity might pave the way for targeting this pathway in future therapies.
Collapse
Affiliation(s)
- Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology and Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology and Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology and Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology and Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology and Christian Doppler Laboratory for Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Pohl R, Haberl EM, Rein-Fischboeck L, Zimny S, Neumann M, Aslanidis C, Schacherer D, Krautbauer S, Eisinger K, Weiss TS, Buechler C. Hepatic chemerin mRNA expression is reduced in human nonalcoholic steatohepatitis. Eur J Clin Invest 2017; 47:7-18. [PMID: 27797398 DOI: 10.1111/eci.12695] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chemerin is associated with insulin resistance and is expressed in the liver. Nonalcoholic fatty liver disease (NAFLD) is related to impaired insulin sensitivity, but studies evaluating hepatic and serum chemerin in NAFLD resulted in discordant data. MATERIALS AND METHODS Chemerin mRNA was determined in the liver tissue obtained from 33 controls and 76 NAFLD patients. Chemerin serum levels were measured in a different cohort of patients with ultrasound-diagnosed NAFLD and the respective controls. Hepatic stellate cells and hepatocytes were exposed to selected metabolites and nuclear receptor agonists to study the regulation of chemerin. Effect of recombinant chemerin on hepatocyte released proteins was analysed. RESULTS Hepatic chemerin expression was not related to BMI, gender, type 2 diabetes and hypertension. Chemerin mRNA did not correlate with steatosis and was negatively associated with inflammation, fibrosis and nonalcoholic steatohepatitis (NASH) score. Patients with NASH had lower chemerin mRNA compared to those with borderline NASH and controls. Factors with a role in NASH mostly did not regulate chemerin in the liver cells. Of note, liver X receptor agonist reduced chemerin protein. Serum chemerin was not changed in NAFLD. Levels positively correlated with age, waist-to-hip ratio, systolic blood pressure, serum FGF21 and lipocalin 2, and negatively with transferrin saturation. Chemerin induced FGF21 in supernatants of primary human hepatocytes. Hepcidin, a major regulator of iron homoeostasis and lipocalin 2, were not regulated by chemerin. CONCLUSION Chemerin mRNA is reduced in the liver of NASH patients, and liver X receptor seems to have a role herein.
Collapse
Affiliation(s)
- Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Sebastian Zimny
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Maximilian Neumann
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Charalampos Aslanidis
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Doris Schacherer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|