1
|
Nedospasov SA, Kruglov AA, Tumanov AV, Drutskaya MS, Astrakhantseva IV, Kuprash DV. Reverse Genetics Applied to Immunobiology of Tumor Necrosis Factor, a Multifunctional Cytokine. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:853-861. [PMID: 38880646 DOI: 10.1134/s0006297924050067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 06/18/2024]
Abstract
Tumor necrosis factor (TNF) is one of many cytokines - protein molecules responsible for communication between the cells of immune system. TNF was discovered and given its grand name because of its striking antitumor effects in experimental systems, but its main physiological functions in the context of whole organism turned out to be completely unrelated to protection against tumors. This short review discusses "man-made" mouse models generated by early genome-editing technologies, which enabled us to establish true functions of TNF in health and certain diseases as well as to unravel potential strategies for improving therapy of TNF-dependent diseases.
Collapse
Affiliation(s)
- Sergey A Nedospasov
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrei A Kruglov
- Laboratory of Systems Rheumatology, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, 10117, Germany
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 79229, USA
| | - Marina S Drutskaya
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Irina V Astrakhantseva
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
2
|
Clayer E, Frank D, Anderton H, Zhang S, Kueh A, Heim V, Nutt SL, Chopin M, Bouillet P. ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skin‐draining lymph nodes. Immunol Cell Biol 2022; 100:160-173. [PMID: 35048402 PMCID: PMC9303644 DOI: 10.1111/imcb.12521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Abstract
The role of RNA‐binding proteins of the CCCH‐containing family in regulating proinflammatory cytokine production and inflammation is increasingly recognized. We have identified ZC3H12C (Regnase‐3) as a potential post‐transcriptional regulator of tumor necrosis factor expression and have investigated its role in vivo by generating Zc3h12c‐deficient mice that express green fluorescent protein instead of ZC3H12C. Zc3h12c‐deficient mice develop hypertrophic lymph nodes. In the immune system, ZC3H12C expression is mostly restricted to the dendritic cell (DC) populations, and we show that DC‐restricted ZC3H12C depletion is sufficient to cause lymphadenopathy. ZC3H12C can regulate Tnf messenger RNA stability via its RNase activity in vitro, and we confirmed the role of Tnf in the development of lymphadenopathy. Finally, we found that loss of ZC3H12C did not impact the outcome of skin inflammation in the imiquimod‐induced murine model of psoriasis, despite Zc3h12c being identified as a risk factor for psoriasis susceptibility in several genome‐wide association studies. Our data suggest a role for ZC3H12C in DC‐driven skin homeostasis.
Collapse
Affiliation(s)
- Elise Clayer
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
- ZAUM – Centre of Allergy and Environment Helmholtz Centre and Technical University of Munich Munich Germany
| | - Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Valentin Heim
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
- Immatics Biotechnologies GmbH Munich Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| | - Philippe Bouillet
- The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology The University of Melbourne Melbourne VIC Australia
| |
Collapse
|
3
|
Marusich JA, Gay EA, Stewart DA, Blough BE. Sex differences in inflammatory cytokine levels following synthetic cathinone self-administration in rats. Neurotoxicology 2022; 88:65-78. [PMID: 34742947 PMCID: PMC8748414 DOI: 10.1016/j.neuro.2021.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Synthetic cathinones are used as stimulants of abuse. Many abused drugs, including stimulants, activate nuclear factor-κB (NF-κB) transcription leading to increases in NF-κB-regulated pro-inflammatory cytokines, and the level of inflammation appears to correlate with length of abuse. The purpose of this study was to measure the profile of IL-1α, IL-1β, IL-6, CCL2 and TNF-α in brain and plasma to examine if drug exposure alters inflammatory markers. Male and female Sprague-Dawley rats were trained to self-administer α-pyrrolidinopentiophenone (α-PVP) (0.1 mg/kg/infusion), 4-methylmethcathinone (4MMC) (0.5 mg/kg/infusion), or saline through autoshaping, and then self-administered for 21 days during 1 h (short access; ShA) or 6 h (long access; LgA) sessions. Separate rats were assigned to a naïve control group. Cytokine levels were examined in amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, thalamus, and plasma. Rats acquired synthetic cathinone self-administration, and there were no sex differences in drug intake. Synthetic cathinone self-administration produced sex differences in IL-1α, IL-1β, IL-6, CCL2 and TNF-α levels. There were widespread increases in inflammatory cytokines in the brains of male rats compared to females, particularly for 4MMC, whereas females were more likely to show increased inflammatory cytokines in plasma compared to saline groups than males. Furthermore, these sex differences in cytokine levels were more common after LgA access to synthetic cathinones than ShA. These results suggest that synthetic cathinone use likely produces sex-selective patterns of neuroinflammation during the transition from use to abuse. Consequently, treatment need may differ depending on the progression of synthetic cathinone abuse and based on sex.
Collapse
Affiliation(s)
- Julie A. Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Elaine A. Gay
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina at Chapel Hill, Nutrition Research Institute, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Bruce E. Blough
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
4
|
Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021; 270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells. In recent years, it has been demonstrated that various nanobiomaterials hold great potential to enhance cancer vaccination cascade and improve their antitumor performance and reduce the off-target effect. We summarize the cutting-edge advances of nanobiomaterials-based vaccination immunotherapy of cancer in this review. The various cancer nanovaccines including antigen peptide/adjuvant-based nanovaccines, nucleic acid-based nanovaccines as well as biomimetic nanobiomaterials-based nanovaccines are discussed in detail. We also provide some challenges and perspectives associated with the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Kase N, Terashima M, Ohta A, Niwa A, Honda‐Ozaki F, Kawasaki Y, Nakahata T, Kanazawa N, Saito MK. Pluripotent stem cell-based screening identifies CUDC-907 as an effective compound for restoring the in vitro phenotype of Nakajo-Nishimura syndrome. Stem Cells Transl Med 2020; 10:455-464. [PMID: 33280267 PMCID: PMC7900583 DOI: 10.1002/sctm.20-0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/25/2022] Open
Abstract
Nakajo-Nishimura syndrome (NNS) is an autoinflammatory disorder caused by a homozygous mutations in the PSMB8 gene. The administration of systemic corticosteroids is partially effective, but continuous treatment causes severe side effects. We previously established a pluripotent stem cell (PSC)-derived NNS disease model that reproduces several inflammatory phenotypes, including the overproduction of monocyte chemoattractant protein-1 (MCP-1) and interferon gamma-induced protein-10 (IP-10). Here we performed high-throughput compound screening (HTS) using this PSC-derived NNS model to find potential therapeutic candidates and identified CUDC-907 as an effective inhibitor of the release of MCP-1 and IP-10. Short-term treatment of CUDC-907 did not induce cell death within therapeutic concentrations and was also effective on primary patient cells. Further analysis indicated that the inhibitory effect was post-transcriptional. These findings suggest that HTS with PSC-derived disease models is useful for finding drug candidates for autoinflammatory diseases.
Collapse
Affiliation(s)
- Naoya Kase
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Madoka Terashima
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Akira Ohta
- Department of Fundamental Cell TechnologyCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Akira Niwa
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Fumiko Honda‐Ozaki
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan,Department of Pediatrics and Developmental BiologyGraduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yuri Kawasaki
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Tatsutoshi Nakahata
- Department of Fundamental Cell TechnologyCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| | - Nobuo Kanazawa
- Department of DermatologyWakayama Medical UniversityWakayamaJapan
| | - Megumu K. Saito
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA), Kyoto UniversityKyotoJapan
| |
Collapse
|
6
|
Li Y, Zhou Y. Interleukin-17: The Role for Pathological Angiogenesis in Ocular Neovascular Diseases. TOHOKU J EXP MED 2019; 247:87-98. [PMID: 30773517 DOI: 10.1620/tjem.247.87] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ocular neovascular diseases are featured by abnormal angiogenesis in the eye, and they seriously threaten the human visual health. These diseases include proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), retinopathy of prematurity (ROP), and retinal vein occlusion (RVO). In fact, ocular neovascular diseases represent the leading causes of vision impairment and blindness worldwide. Ocular neovascularization, the process of pathological vessel formation in eye, underlies ocular neovascular diseases. Cytokines have important regulatory roles in neovascularization through immunological networks. Interleukin (IL)-17, the signature cytokine produced by T helper 17 (Th17) cells, has proven to be involved in ocular neovascularization. However, roles of IL-17 in ocular neovascular diseases still remain controversial. This review provides an overview of the functional roles of IL-17 in ocular neovascular diseases from basic research to clinical evidence by focusing on PDR, AMD, ROP, and RVO. The possible roles of IL-17 in neovascularization are achieved through a regulatory network of cytoskeleton remodeling, vascular endothelial growth factor (VEGF), VEGF-related cytokines, and complement components. Current applications as well as potential therapies targeting IL-17 with genome editing systems are also outlined and discussed. Targeting IL-17 might be a promising therapeutic strategy against ocular neovascular diseases.
Collapse
Affiliation(s)
- Yuanjun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University.,Department of Ophthalmology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University.,Hunan Clinical Research Center of Ophthalmic Disease
| |
Collapse
|
7
|
Lainez NM, Coss D. Leukemia Inhibitory Factor Represses GnRH Gene Expression via cFOS during Inflammation in Male Mice. Neuroendocrinology 2019; 108:291-307. [PMID: 30630179 PMCID: PMC6561803 DOI: 10.1159/000496754] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanisms whereby neuroinflammation negatively affects neuronal function in the hypothalamus are not clear. Our previous study determined that obesity-mediated chronic inflammation elicits sex-specific impairment in reproductive function via reduction in spine density in gonadotropin-releasing hormone (GnRH) neurons. Neuroinflammation and subsequent decrease in GnRH neuron spine density was specific for male mice, while protection in females was independent of ovarian estrogens. METHODS To examine if neuroinflammation-induced cytokines can directly regulate GnRH gene expression, herein we examined signaling pathways and mechanisms in males in vivo and in GnRH-expressing cell line, GT1-7. RESULTS GnRH neurons express cytokine receptors, and chronic or acute neuroinflammation represses GnRH gene expression in vivo. Leukemia inhibitory factor (LIF) in particular represses GnRH expression in GT1-7 cells, while other cytokines do not. STAT3 and MAPK pathways are activated following LIF treatment, but only MAPK pathway, specifically p38α, is sufficient to repress the GnRH gene. LIF induces cFOS that represses the GnRH gene via the -1,793 site in the enhancer region. In vivo, following high-fat diet, cFOS is induced in GnRH neurons and neurons juxtaposed to the leaky blood brain barrier of the organum vasculosum of the lamina terminalis, but not in the neurons further away. CONCLUSION Our results indicate that the increase in LIF due to neuroinflammation induces cFOS and represses the GnRH gene. Therefore, in addition to synaptic changes in GnRH neurons, neuroinflammatory cytokines directly regulate gene expression and reproductive function, and the specificity for neuronal targets may stem from the proximity to the fenestrated capillaries.
Collapse
Affiliation(s)
- Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA,
| |
Collapse
|
8
|
Naran K, Nundalall T, Chetty S, Barth S. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Front Microbiol 2018; 9:3158. [PMID: 30622524 PMCID: PMC6308495 DOI: 10.3389/fmicb.2018.03158] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.
Collapse
Affiliation(s)
- Krupa Naran
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|