1
|
Yu JE, Jeon SH, Kim MJ, Kim DH, Koo JK, Kim TH, Kim B, Yoon JY, Lim YS, Park SR, Yeo IJ, Yun J, Son DJ, Han SB, Lee YS, Hong JT. Anti-chitinase-3-like 1 antibody attenuated atopic dermatitis-like skin inflammation through inhibition of STAT3-dependent CXCL8 expression. Br J Pharmacol 2024; 181:3232-3245. [PMID: 38745399 DOI: 10.1111/bph.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Chitinase-3-like 1 (CHI3L1) causes skin inflammation in the progression of atopic dermatitis. We investigated if anti-CHI3L1 antibody could prevent the development of atopic dermatitis and its mechanisms of action. EXPERIMENTAL APPROACH The effect of CHI3L1 antibody on phthalic anhydride-induced atopic dermatitis animal model and in vitro reconstructed human skin (RHS) model were investigated. Expression and release of atopic dermatitis-related cytokines were determined using an enzyme-linked immunosorbent assay, and RT-qPCR, STAT3 and CXCL8 signalling were measured by western blotting. KEY RESULTS Anti-CHI3L1 antibody suppressed phthalic anhydride-induced epidermal thickening, clinical score, IgE level and infiltration of inflammatory cells, and reduced phthalic anhydride-induced inflammatory cytokines concentration. In addition, CHI3L1 antibody treatment inhibited the expression of STAT3 activity in phthalic anhydride-treated skin. It was also confirmed that CHI3L1 antibody treatment alleviated atopic dermatitis-related inflammation in the RHS model. The inhibitory effects of CHI3L1 antibody was similar or more effective compared with that of the IL-4 antibody. We further found that CHI3L1 is associated with CXCL8 by protein-association network analysis. siRNA of CHI3L1 blocked the mRNA levels of CHI3L1, IL-1β, IL-4, CXCL8, TSLP, and the expression of CHI3L1 and p-STAT, and the level of CXCL8, whereas recombinant level of CXCL8 was elevated. Moreover, siRNA of STAT3 reduced the mRNA level of these cytokines. CHI3L1 and p-STAT3 expression correlated with the reduced CXCL8 level in the RHS in vitro model. CONCLUSION AND IMPLICATIONS Our data demonstrated that CHI3L1 antibody could be a promising effective therapeutic drug for atopic dermatitis.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
- College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea
| | - Seong Hee Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Min Ji Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Ja Keun Koo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Cheongju-si, Chungbuk, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., Songpa-gu, Seoul, Republic of Korea
| | - Ji Yong Yoon
- PRESTI GEBIOLOGICS Co. Ltd., Cheongju-si, Chungbuk, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Cheongju-si, Chungbuk, Republic of Korea
| | - So Ra Park
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungcheongbuk-do, Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
- College of Pharmacy, Kyungpook National University, Buk-gu, Daegu, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
2
|
Hosokawa Y, Hosokawa I, Shimoyama M, Okamoto R, Ozaki K, Hosaka K. The effects of berteroin on inflammatory mediators and antioxidant enzymes expression in human periodontal ligament cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2233-2240. [PMID: 37804343 DOI: 10.1007/s00210-023-02761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Berteroin is a bioactive substance classified as an isothiocyanate found in cruciferous vegetables such as cabbage, arugula, and salad leaves. In this study, we aimed to determine whether berteroin exerts anti-inflammatory effects on human periodontal ligament cells (HPDLCs), a resident cells of periodontal tissue. Berteroin suppressed interleukin (IL)-1β or tumor necrosis factor (TNF)-α-induced chemokines (C-C motif chemokine ligand (CCL)2, CCL20, C-X-C motif chemokine ligand (CXCL)10, IL-8, and IL-6) production and intercellular adhesion molecule (ICAM)-1 expression in HPDLCs. In addition, berteroin inhibited phosphorylation of IκB kinase (IKK)- α/ β, nuclear factor (NF)- κB p65, and IκB- α and degradation of IκB- α in the NF-κB pathway induced by IL-1 β or TNF- α stimulation. Moreover, berteroin could inhibit signal transducer and activator of transcription (STAT)3 phosphorylation in TNF- α -stimulated HPDLC. Furthermore, berteroin increased the expression of the antioxidant enzymes, heme oxygenase (HO)-1 and NAD(P)H quinone dehydrogenase (NQO)1, in IL-1 β or TNF- α -stimulated HPDLCs. These results suggest that berteroin may decrease the production of inflammatory mediators in HPDLCs by suppressing the NF-κB pathway, and may also decrease the local reactive oxygen species (ROS) production in periodontal lesions by increasing the production of antioxidant enzymes.
Collapse
Affiliation(s)
- Yoshitaka Hosokawa
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan.
| | - Ikuko Hosokawa
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan
| | - Masahiro Shimoyama
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan
| | - Risa Okamoto
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Tokushima, Japan
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Institute Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima, 770-8504, Japan
| |
Collapse
|
3
|
Sağraç D, Aydın S, Kırbaş OK, Öztürkoğlu D, Şahin F. Extracellular vesicles derived from human foreskin cells (hFS-Exo) accelerate cell migration and angiogenesis through MAPK pathway: an in vitro study. Mol Biol Rep 2024; 51:471. [PMID: 38551706 DOI: 10.1007/s11033-024-09378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Wound healing is one of the important processes in the body. Attempts to create new drugs are of interest due to the side effects of natural and chemical wound healing compounds. To overcome this obstacle, stem cells have been used as healing agents. However, both difficulties in collection and risks such as rejection and teratoma in the recipient body have limited the use of stem cells, directly. Since the potential content of the stem cells can be transferred to the recipient cells by vesicles, small extracellular vesicles have recently become prominent agents. METHODS AND RESULTS The wound-healing effect of extracellular vesicles derived from foreskin cells was investigated in both keratinocyte and endothelial cells. Migration assay, RT-PCR, Col1a1 ELISA and Western Blot experiments were utilized to reveal healing effect of EVs and its possible molecular pathways. EV-treated groups exhibited more proliferative, invasive, and migrative characteristics. When comparing to the control group, new vessel formation was induced in EV groups. An increase in gene levels of growth factors related to wound healing and change in the mitogen-activated protein kinase (MAPK) signaling pathway proteins in EV-treated groups were determined. Possible molecular mechanisms underlying cell movements were associated with the MAPK pathway. It was found that human foreskin cell EVs (hFS-Exo) may have a potential to heal wounds in a short period of time by triggering the MAPK pathway. CONCLUSIONS hFS-Exo could be a new promising wound healing agent in the future.
Collapse
Affiliation(s)
- Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Safa Aydın
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Dilek Öztürkoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
4
|
Xiaojie W, Banda J, Qi H, Chang AK, Bwalya C, Chao L, Li X. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev 2022; 66:26-37. [PMID: 35690568 DOI: 10.1016/j.cytogfr.2022.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
The process of wound healing involves a complex and vast interplay of growth factors and cytokines that coordinate the recruitment and interaction of various cell types. A series of events involving inflammation, proliferation, and remodeling eventually leads to the restoration of the damaged tissue. Abrogation in the regulation of these events has been shown to result in excessive scarring or non-healing wounds. While the process of wound healing is not fully elucidated, it has been documented that the early events of wound healing play a key role in the outcome of the wound. Furthermore, high levels of inflammation have been shown to lead to scarring. The regulation of these events may result in scarless wound healing, especially in adults. The inhibition of transforming growth factor-β (TGF-β) and the administration of keratinocyte growth factors (KGF), KGF-1 and KGF-2, has in recent years yielded positive results in the acceleration of wound closure and reduced scarring. Here, we encapsulate recent knowledge on the roles of TGF-β, KGF1, and KGF2 in wound healing and scar formation and highlight the areas that need further investigation. We also discuss potential future directions for the use of growth factors in wound management.
Collapse
Affiliation(s)
| | | | - Hui Qi
- Wenzhou Medical University, China
| | | | | | - Lu Chao
- Wenzhou Medical University, China
| | | |
Collapse
|
5
|
Du X, Hou Y, Huang J, Pang Y, Ruan C, Wu W, Xu C, Zhang H, Yin L, He W. Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response. Acta Pharm Sin B 2021; 11:3272-3285. [PMID: 34729315 PMCID: PMC8546930 DOI: 10.1016/j.apsb.2021.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Co-delivery of chemotherapeutics and immunostimulant or chemoimmunotherapy is an emerging strategy in cancer therapy. The precise control of the targeting and release of agents is critical in this methodology. This article proposes the asynchronous release of the chemotherapeutic agents and immunostimulants to realize the synergistic effect between chemotherapy and immunotherapy. To obtain a proof-of-concept, a co-delivery system was prepared via a drug-delivering-drug (DDD) strategy for cytosolic co-delivery of Poly I:C, a synthetic dsRNA analog to activate RIG-I signaling, and PTX, a commonly used chemotherapeutics, in which pure PTX nanorods were sequentially coated with Poly I:C and mannuronic acid via stimulating the RIG-I signaling axis. The co-delivery system with a diameter of 200 nm enables profound immunogenicity of cancer cells, exhibiting increased secretion of cytokines and chemokines, pronounced immune response in vivo, and significant inhibition of tumor growth. Also, we found that intracellularly sustained release of cytotoxic agents could elicit the immunogenicity of cancer cells. Overall, the intracellular asynchronous release of chemotherapeutics and immunomodulators is a promising strategy to promote the immunogenicity of cancer cells and augment the antitumor immune response.
Collapse
Affiliation(s)
- Xiaoqing Du
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuqi Hou
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Pang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chenlu Ruan
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Hongwei Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy–Boston, MCPHS University, Boston, MA 02115, USA
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Corresponding author.
| |
Collapse
|
6
|
Zhou G, Xu Y, He B, Ma R, Wang Y, Chang Y, Xie Y, Wu L, Huang J, Xiao Z. Ionizing radiation modulates vascular endothelial growth factor expression through STAT3 signaling pathway in rat neonatal primary astrocyte cultures. Brain Behav 2020; 10:e01529. [PMID: 32106359 PMCID: PMC7177558 DOI: 10.1002/brb3.1529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Radiation-induced brain injury (RBI) usually occurs six months to three years after irradiation, often shows cognitive dysfunction, epilepsy, and other neurological dysfunction. In severe cases, it can cause a wide range of cerebral edema, even herniation. It seriously threatens the survival of patients and their quality of life, and it becomes a key factor in limiting the radiation dose and lowering the therapeutic efficacy in recent years. Therefore, studying the pathogenesis of RBI and exploring new therapeutic targets are of great significance. METHODS In our study, we observed the activation and secretory function in astrocytes as well as the intracellular signal transducer and activator of transcription 3 (STAT3) signal transduction pathway activation status after exposing different doses of X-ray irradiation by using MTT, Immunocytologic analysis, and Western blot analysis. Further, we used the same way to explore the role of vascular endothelial growth factor (VEGF) in signal transduction pathways playing in the activation of astrocytes after irradiating through the use of specificInhivascular endothelial growth factorbitors of STAT3. RESULTS Ast can be directly activated, reactive hyperplasia and hypertrophy, the expression of the activation marker glial fibrillary acidic protein is increased, and the expression of vascular endothelial growth factor (VEGF) in the cells is increased, which may lead to RBI. After the addition of STAT3 pathway inhibitor, most of the Ast radiation activation was suppressed, and the expression of high-level expression of VEGF decreased after irradiation. CONCLUSION Our findings demonstrated that X-ray irradiation directly induced the activation of astrocytes in a persistent manner and X-ray irradiation activated STAT3 signaling pathway. As the same time, we found that X-ray irradiation induced the activation of astrocytes and secretion cytokine. The STAT3 signaling pathway may participate in the pathogenesis of radiation-induced brain injury.
Collapse
Affiliation(s)
- Guijuan Zhou
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Yan Xu
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Bing He
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Rundong Ma
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Yilin Wang
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Yunqian Chang
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Yangzhi Xie
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China.,Leiyang People's Hospital, Leiyang, China
| | - Lin Wu
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Jianghua Huang
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| | - Zijian Xiao
- The First Afliated Hospital of University of South China, University of South China, Hengyang, China
| |
Collapse
|
7
|
Fang Y, Wang B, Lyu S, Zhang K, Cheng Q, Zhu Y. Virus analog decreases estradiol secretion in FSH-treated human ovarian granulosa cells. Gynecol Endocrinol 2020; 36:346-350. [PMID: 31595804 DOI: 10.1080/09513590.2019.1658730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate the effect of virus infection on estradiol (E2) production in human ovarian granulosa cells. Polyriboinosinic polyribocytidylic acid [Poly (I: C)], a synthetic analog of viral double stranded RNA that can be recognized by Toll like receptor 3 (TLR3), was used to imitate virus infection. Granulosa cells (GCs) obtained from patients undergoing in vitro fertilization and embryo transfer (IVF-ET) were cultured in vitro and treated with Poly (I: C), FSH, or both. Concentration of E2 was assayed by electrochemiluminescence. The mRNA and protein expression of TLR3 and aromatase were determined by real-time quantitative PCR (qPCR) and Western blot, respectively. The results showed that expression of TLR3 mRNA was significantly increased after Poly (I: C) stimulation. Poly (I: C) decreased E2 synthesis in FSH-treated GCs. Poly (I: C) inhibited the expression of aromatase in FSH-treated GCs. This study demonstrated that Poly (I: C) inhibits the synthesis of estradiol by granulosa cells under the stimulation of FSH, which might contribute to disturbance of follicular development and ovulation.
Collapse
Affiliation(s)
- Yuying Fang
- School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Bo Wang
- Department of Reproductive Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shiming Lyu
- School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Kemei Zhang
- Reproductive Medicine Center, Ningbo First Hospital, Ningbo, China
| | - Qi Cheng
- School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| | - Yimin Zhu
- School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Transcriptome profiling of poly(I:C)-induced RAW 264.7 mouse macrophages in response to panaxadiol. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00288-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|