1
|
Palomino-Cano C, Moreno E, Irache JM, Espuelas S. Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles. Front Immunol 2024; 15:1437430. [PMID: 39211053 PMCID: PMC11357945 DOI: 10.3389/fimmu.2024.1437430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages play a pivotal role as host cells for Leishmania parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, Leishmania employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype. This review explores the intricate interplay between macrophages, Leishmania, and iron. We focus the attention on the potential of iron oxide nanoparticles (IONPs) as a sort of immunotherapy to treat some leishmaniasis forms by reprogramming Leishmania-permissive M2 macrophages into antimicrobial M1 macrophages. Through the specific targeting of iron in macrophages, the use of IONPs emerges as a promising strategy to finely tune the parasite-host interaction, endowing macrophages with an augmented antimicrobial arsenal capable of efficiently eliminating these intrusive microbes.
Collapse
Affiliation(s)
- Carmen Palomino-Cano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Juan M. Irache
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Socorro Espuelas
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
2
|
Sarkar D, Monzote L, Gille L, Chatterjee M. Natural endoperoxides as promising anti-leishmanials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155640. [PMID: 38714091 DOI: 10.1016/j.phymed.2024.155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND The discovery of artemisinin, an endoperoxide, encouraged the scientific community to explore endoperoxides as potential anti-parasitic molecules. Although artemisinin derivatives are rapidly evolving as potent anti-malarials, their potential as anti-leishmanials is emerging gradually. The treatment of leishmaniasis, a group of neglected tropical diseases is handicapped by lack of effective vaccines, drug toxicities and drug resistance. The weak antioxidant defense mechanism of the Leishmania parasites due to lack of catalase and a selenium dependent glutathione peroxidase system makes them vulnerable to oxidative stress, and this has been successful exploited by endoperoxides. PURPOSE The study aimed to review the available literature on the anti-leishmanial efficacy of natural endoperoxides with a view to achieve insights into their mode of actions. METHODS We reviewed more around 110 research and review articles restricted to the English language, sourced from electronic bibliographic databases including PubMed, Google, Web of Science, Google scholar etc. RESULTS: Natural endoperoxides could potentially augment the anti-leishmanial drug library, with artemisinin and ascaridole emerging as potential anti-leishmanial agents. Due to higher reactivity of the cyclic peroxide moiety, and exploiting the compromised antioxidant defense of Leishmania, endoperoxides like artemisinin and ascaridole potentiate their leishmanicidal efficacy by creating a redox imbalance. Furthermore, these molecules minimally impair oxidative phosphorylation; instead inhibit glycolytic functions, culminating in depolarization of the mitochondrial membrane and depletion of ATP. Additionally, the carbon-centered free radicals generated from endoperoxides, participate in chain reactions that can generate even more reactive organic radicals that are toxic to macromolecules, including lipids, proteins and DNA, leading to cell cycle arrest and apoptosis of Leishmania parasites. However, the precise target(s) of the toxic free radicals remains open-ended. CONCLUSION In this overview, the spectrum of natural endoperoxide molecules as major anti-leishmanials and their mechanism of action has been delineated. In view of the substantial evidence that natural endoperoxides (e.g., artemisinin, ascaridole) exert a noxious effect on different species of Leishmania, identification and characterization of other natural endoperoxides is a promising therapeutic option worthy of further pharmacological consideration.
Collapse
Affiliation(s)
- Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine "Pedro Kourí", Havana 10400, Cuba
| | - Lars Gille
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata-700 020, W.B, India.
| |
Collapse
|
3
|
Araújo M, Moreira D, Mesquita I, Ferreira C, Mendes-Frias A, Barros-Carvalho S, Dinis-Oliveira RJ, Duarte-Oliveira C, Cunha C, Carvalho A, Saha B, Cordeiro-da-Silva A, Estaquier J, Silvestre R. Intramacrophage lipid accumulation compromises T cell responses and is associated with impaired drug therapy against visceral leishmaniasis. Immunology 2023; 170:510-526. [PMID: 37635289 DOI: 10.1111/imm.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Under perturbing conditions such as infection with Leishmania, a protozoan parasite living within the phagosomes in mammalian macrophages, cellular and organellar structures, and metabolism are dynamically regulated for neutralizing the pressure of parasitism. However, how modulations of the host cell metabolic pathways support Leishmania infection remains unknown. Herein, we report that lipid accumulation heightens the susceptibility of mice to L. donovani infection and promotes resistance to first-line anti-leishmanial drugs. Despite being pro-inflammatory, the in vitro generated uninfected lipid-laden macrophages (LLMs) or adipose-tissue macrophages (ATMs) display lower levels of reactive oxygen and nitrogen species. Upon infection, LLMs secrete higher IL-10 and lower IL-12p70 cytokines, inhibiting CD4+ T cell activation and Th1 response suggesting a key modulatory role for intramacrophage lipid accumulation in anti-leishmanial host defence. We, therefore, examined this causal relationship between lipids and immunomodulation using an in vivo high-fat diet (HFD) mouse model. HFD increased the susceptibility to L. donovani infection accompanied by a defective CD4+ Th1 and CD8+ T cell response. The white adipose tissue of HFD mice displays increased susceptibility to L. donovani infection with the preferential infection of F4/80+ CD11b+ CD11c+ macrophages with higher levels of neutral lipids reserve. The HFD increased resistance to a first-line anti-leishmanial drug associated with a defective adaptive immune response. These data demonstrate that the accumulation of neutral lipids contributes to susceptibility to visceral leishmaniasis hindering host-protective immune response and reducing the efficacy of antiparasitic drug therapies.
Collapse
Affiliation(s)
- Marta Araújo
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Moreira
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
| | - Inês Mesquita
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carolina Ferreira
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Mendes-Frias
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Barros-Carvalho
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- MTG Research and Development Lab, Porto, Portugal
| | - Cláudio Duarte-Oliveira
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
| | - Jérôme Estaquier
- INSERM U1124, Université Paris Cité, Paris, France
- Pathophysiology of Cell Death in Host-Pathogen Interactions, CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada
| | - Ricardo Silvestre
- Immunobiology of Inflammatory and Infectious Diseases (i3D), Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Salarkia E, Sharifi I, Keyhani A, Tavakoli Oliaee R, Khosravi A, Sharifi F, Bamorovat M, Babaei Z. In silico and in vitro potentials of crocin and amphotericin B on Leishmania major: Multiple synergistic mechanisms of actions. PLoS One 2023; 18:e0291322. [PMID: 37682934 PMCID: PMC10490900 DOI: 10.1371/journal.pone.0291322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
A significant barrier to optimal antileishmanial treatment is low efficacy and the emergence of drug resistance. Multiple approaches were used to monitor and assess crocin (a central component of saffron) mixed with amphotericin B (AmpB) potential in silico and in vitro consequences. The binding behavior of crocin and iNOS was the purpose of molecular docking. The results showed that crocin coupled with AmpB demonstrated a safe combination, extremely antileishmanial, suppressed Leishmania arginase absorption, and increased parasite death. This natural flower component is a robust antioxidant, significantly promoting the expression of the Th1-connected cytokines (IL12p40, IFN-γ, and TNF- α), iNOS, and transcription factors (Elk-1, c-Fos, and STAT-1). In comparison, the expression of the Th2-associated phenotypes (IL-10, IL-4, and TGF-β) was significantly reduced. The leishmanicidal effect of this combination was also mediated through programmed cell death (PCD), as confirmed by the manifestation of phosphatidylserine and cell cycle detention at the sub-GO/G1 phase. In conclusion, crocin with AmpB synergistically exerted in vitro antileishmanial action, generated nitric oxide and reactive oxygen species, modulated Th1, and Th2 phenotypes and transfer factors, enhanced PCD profile and arrested the cell cycle of Leishmania major promastigotes. The main action of crocin and AmpB involved wide-ranging mechanistic insights for conducting other clinical settings as promising drug candidates for cutaneous leishmaniasis. Therefore, this combination could be esteemed as a basis for a potential bioactive component and a logical source for leishmanicidal drug development against CL in future advanced clinical settings.
Collapse
Affiliation(s)
- Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Tavakoli Oliaee
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Li JX, Huang YY, Huang ZM, Cao XJ, Xie LM, Guo XG. Screening of potential hub genes involved in Cutaneous Leishmaniasis infection via bioinformatics analysis. Acta Trop 2022; 236:106645. [PMID: 36063903 DOI: 10.1016/j.actatropica.2022.106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Cutaneous Leishmaniasis (CL) is the most common clinical form of leishmaniasis. Despite its low mortality, CL deserves further attention because its pathogenesis is currently no well-known or well-researched. METHODS We downloaded the gene expression datasets of GSE55664 and GSE63931 with respect to leishmaniasis from the Gene Expression Synthesis (GEO) database. Additionally, the differentially expressed genes (DEGs) in the infection and control groups were identified by packages of R software. The Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) pathway were utilized for the biological functional analysis. Subsequently, we identified the top ten hub genes from protein-protein interaction (PPI) networks based on STRING and Cytoscape software. The hub genes were validated in GraphPad Prism 8.0 using the GSE162760 dataset. Further, CIBERSORT was used to evaluate the immune cell infiltration proportions between the CL infection samples and the control samples based on the GSE43880 and GSE55664 datasets. RESULTS The enrichment analysis revealed that DEGs were significantly involved in cell-mediated immune responses, such as leukocyte cell-cell adhesion and T-cell activation. STAT1, CCR7, CCR2, and CXCL10 were identified as hub genes with statistical significance. These hub genes showed close correlations with various immune cells, such as M1 cells and CD4-activated memory T-cells. CONCLUSIONS In our research, we used bioinformatics analysis to identify some molecular biomarkers and significant pathways in CL infection. These hub genes may provide new options for future diagnosis and treatment.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Yi Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Li-Min Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Correia BSB, Ferreira VG, Piagge PMFD, Almeida MB, Assunção NA, Raimundo JRS, Fonseca FLA, Carrilho E, Cardoso DR. 1H qNMR-Based Metabolomics Discrimination of Covid-19 Severity. J Proteome Res 2022; 21:1640-1653. [PMID: 35674498 PMCID: PMC9212193 DOI: 10.1021/acs.jproteome.1c00977] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (Covid-19), which caused respiratory problems in many patients worldwide, led to more than 5 million deaths by the end of 2021. Experienced symptoms vary from mild to severe illness. Understanding the infection severity to reach a better prognosis could be useful to the clinics, and one study area to fulfill one piece of this biological puzzle is metabolomics. The metabolite profile and/or levels being monitored can help predict phenotype properties. Therefore, this study evaluated plasma metabolomes of 110 individual samples, 57 from control patients and 53 from recent positive cases of Covid-19 (IgM 98% reagent), representing mild to severe symptoms, before any clinical intervention. Polar metabolites from plasma samples were analyzed by quantitative 1H NMR. Glycerol, 3-aminoisobutyrate, formate, and glucuronate levels showed alterations in Covid-19 patients compared to those in the control group (Tukey's HSD p-value cutoff = 0.05), affecting the lactate, phenylalanine, tyrosine, and tryptophan biosynthesis and d-glutamine, d-glutamate, and glycerolipid metabolisms. These metabolic alterations show that SARS-CoV-2 infection led to disturbance in the energetic system, supporting the viral replication and corroborating with the severe clinical conditions of patients. Six polar metabolites (glycerol, acetate, 3-aminoisobutyrate, formate, glucuronate, and lactate) were revealed by PLS-DA and predicted by ROC curves and ANOVA to be potential prognostic metabolite panels for Covid-19 and considered clinically relevant for predicting infection severity due to their straight roles in the lipid and energy metabolism. Thus, metabolomics from samples of Covid-19 patients is a powerful tool for a better understanding of the disease mechanism of action and metabolic consequences of the infection in the human body and may corroborate allowing clinicians to intervene quickly according to the needs of Covid-19 patients.
Collapse
Affiliation(s)
- Banny S. B. Correia
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
| | - Vinicius G. Ferreira
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de
Bioanalítica, INCTBio, Campinas, SP 13083-861,
Brazil
| | | | - Mariana B. Almeida
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de
Bioanalítica, INCTBio, Campinas, SP 13083-861,
Brazil
| | - Nilson A. Assunção
- Instituto de Ciências Ambientais, Químicas
e Farmacêuticas, Universidade Federal de São
Paulo, São Paulo, SP 09972-270, Brazil
| | | | - Fernando L. A. Fonseca
- Faculdade de Medicina do
ABC, Santo André, SP 09060-870, Brazil
- Departamento de Ciências Farmacêuticas,
Universidade Federal de São Paulo, Diadema, SP
09972-270, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
- Instituto Nacional de Ciência e Tecnologia de
Bioanalítica, INCTBio, Campinas, SP 13083-861,
Brazil
| | - Daniel R. Cardoso
- Instituto de Química de São Carlos,
Universidade de São Paulo, São Carlos, SP
13566-590, Brazil
| |
Collapse
|
7
|
Aljedaie MM. Epigenetic paradigms/exemplars of the macrophage: inflammasome axis in Leishmaniasis. Mol Cell Biochem 2022; 477:2553-2565. [PMID: 35595955 DOI: 10.1007/s11010-022-04460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
The infectious paradigms have recently led to the recognition interplay of complex phenomenon underpinning disease diagnosis and prognosis. Evidently, parasitic infection studies are depicting converging trends of the epigenetic, environmental, and microbiome contributions, assisting pathogen-directed modulations of host biological system. The molecular details of epigenetic variations and memory, along with the multi-omics data at the interface of the host-pathogen level becomes strong indicator of immune cell plasticity, differentiation, and pathogen survival. Despite being one of the most important aspects of the disease's etiopathology, the epigenetic regulation of host-pathogen interactions and evolutionary epigenetics have received little attention thus far. Recent evidence has focused on the growing need to link epigenetic and microbiome modulations on parasite phenotypic plasticity and pathogen-induced host phenotypic plasticity for designing futuristic therapeutic regimes. Leishmaniasis is a neglected tropical illness with varying degrees of disease severity that is linked to a trans-species and epigenetic heredity process, including the pathogen-induced host and strain-specific modulations. The review configures research findings aligning to the epigenetic epidemiology niche, involving co-evolutionary epigenetic inheritance and plasticity disease models. The epigenetic exemplars focus on the host-pathogen interactome expanse at the macrophage-inflammasome axis.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
8
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Kar A, Jayaraman A, Kumar A, Kar Mahapatra S. Dynamicity in Host Metabolic Adaptation Is Influenced by the Synergistic Effect of Eugenol Oleate and Amphotericin B During Leishmania donovani Infection In Vitro. Front Cell Infect Microbiol 2021; 11:709316. [PMID: 34414131 PMCID: PMC8369346 DOI: 10.3389/fcimb.2021.709316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Abstract
Immune metabolic adaptation in macrophages by intracellular parasites is recognized to play a crucial role during Leishmania infection. However, there is little accessible information about changes in a metabolic switch in L. donovani infected macrophages. In previous studies, we have reported on the anti-leishmanial synergic effect of eugenol oleate with amphotericin B. In the present study, we demonstrated that glycolytic enzymes were highly expressed in infected macrophages during combinatorial treatment of eugenol oleate (2.5 µM) and amphotericin B (0.3125 µM). Additionally, we found that the biphasic role in arachidonic acid metabolite, PGE2, and LTB4, is released during this treatment. In vitro data showed that COX-2 mediated PGE2 synthesis increased significantly (p<0.01) in infected macrophages. Not only was the level of prostaglandin synthesis decreased 4.38 fold in infected macrophages after treatment with eugenol oleate with amphotericin B. The mRNA expression of PTGES, MPGES, and PTGER4 were also moderately expressed in infected macrophages, and found to be decreased in combinatorial treatment. In addition, NOS2 expression was activated by the phosphorylation of p38MAPK when combination-treated macrophages were promoted to kill intracellular parasites. The findings of the present study indicate that the synergism between eugenol oleate and amphotericin B could play an important role in immune metabolism adaptation with a concomitant increase in host immune response against the intracellular pathogen, L. donovani.
Collapse
Affiliation(s)
- Amrita Kar
- Department of Biotechnology, School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed to be University, Thanjavur, India
| | - Adithyan Jayaraman
- Department of Biotechnology, School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed to be University, Thanjavur, India
| | - Avanthika Kumar
- Department of Biotechnology, School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed to be University, Thanjavur, India
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology & Research Academy (SASTRA) Deemed to be University, Thanjavur, India.,Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, India
| |
Collapse
|