1
|
Audia S, Brescia C, Dattilo V, Torchia N, Trapasso F, Amato R. The IL-23R and Its Genetic Variants: A Hitherto Unforeseen Bridge Between the Immune System and Cancer Development. Cancers (Basel) 2024; 17:55. [PMID: 39796684 PMCID: PMC11718844 DOI: 10.3390/cancers17010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
IL-23R (interleukin-23 receptor), found on the surface of several immune cells, plays a key role in the immune system. Indeed, this process is not limited to the inflammatory response but also plays a role in the adaptive immune response. The binding between IL-23R and its specific ligand, the interleukin 23, initiates a number of specific signals by modulating both properties and behavior of immune cells. In particular, it is critical for the regulation of T helper 17 cells (Th17). Th17s are a subset of T cells involved in autoimmune and inflammatory diseases, as well as in cancer. The clinical relevance of IL-23R is underscored by its association with an elevated susceptibility or diminished vulnerability to a spectrum of diseases, including psoriasis, ankylosing spondylitis, and inflammatory bowel disease (IBD). Evidence has emerged that suggests it may also serve to predict both tumor progression and therapeutic responsiveness. It is noteworthy that the IL-23/IL-23R pathway is emerging as a promising therapeutic target. A number of biologic drugs, such as monoclonal antibodies, are currently developing with the aim of blocking this interaction, thus reducing inflammation. This represents a significant advancement in the field of medicine, offering new hope for pursuing more effective and personalized treatments. Recent studies have also investigated the role of such a pathway in autoimmune diseases, and its potential impact on infections as well as in carcinogenesis. The aim of this review is to focus on the role of IL-23R in immune genetics and its potential for modulating the natural history of neoplastic disease.
Collapse
Affiliation(s)
- Salvatore Audia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Carolina Brescia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Naomi Torchia
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Rosario Amato
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.A.); (C.B.); (N.T.)
| |
Collapse
|
2
|
Azimi M, Manavi MS, Afshinpour M, Khorram R, Vafadar R, Rezaei-Tazangi F, Arabzadeh D, Arabzadeh S, Ebrahimi N, Aref AR. Emerging immunologic approaches as cancer anti-angiogenic therapies. Clin Transl Oncol 2024:10.1007/s12094-024-03667-2. [PMID: 39294514 DOI: 10.1007/s12094-024-03667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Targeting tumor angiogenesis, the formation of new blood vessels supporting cancer growth and spread, has been an intense focus for therapy development. However, benefits from anti-angiogenic drugs like bevacizumab have been limited by resistance stemming from activation of compensatory pathways. Recent immunotherapy advances have sparked interest in novel immunologic approaches that can induce more durable vascular pruning and overcome limitations of existing angiogenesis inhibitors. This review comprehensively examines these emerging strategies, including modulating tumor-associated macrophages, therapeutic cancer vaccines, engineered nanobodies and T cells, anti-angiogenic cytokines/chemokines, and immunomodulatory drugs like thalidomide analogs. For each approach, the molecular mechanisms, preclinical/clinical data, and potential advantages over conventional drugs are discussed. Innovative therapeutic platforms like nanoparticle delivery systems are explored. Moreover, the importance of combining agents with distinct mechanisms to prevent resistance is evaluated. As tumors hijack angiogenesis for growth, harnessing the immune system's specificity to disrupt this process represents a promising anti-cancer strategy covered by this review.
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Biochemistry, Medical Faculty, Saveh Branch, Islamic Azad University, Saveh, Iran
| | | | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Danyal Arabzadeh
- Xi'an Jaiotong University Medical Campus, Xi'an Jaiotong University, Xi'an, Shaanxi Province, China
| | - Sattar Arabzadeh
- Xi'an Jaiotong University Medical Campus, Xi'an Jaiotong University, Xi'an, Shaanxi Province, China
| | - Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Amir Reza Aref
- Mass General Cancer Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Mellati A, Soltani S, Kazemi T, Ahmadzadeh N, Akhtari M, Madreseh E, Jamshidi A, Farhadi E, Mahmoudi M. Determination of IL-23 receptor expression and gene polymorphism (rs1884444) in Iranian patients with ankylosing spondylitis. BMC Rheumatol 2024; 8:14. [PMID: 38605394 PMCID: PMC11007996 DOI: 10.1186/s41927-024-00383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Through investigating genetic variations, it has been demonstrated that single nucleotide polymorphisms (SNPs) in the IL-23 receptor (IL23R) gene have a critical role in the pathophysiology of ankylosing spondylitis (AS). Here, we investigated whether the IL23R variant (rs1884444) is associated with AS in the Iranian population. METHODS AND MATERIAL In this research, we analyzed rs1884444 in a group of 425 patients with AS and 400 matched controls. For DNA extraction, the phenol/chloroform technique was utilized. Peripheral blood mononuclear cells (PBMCs) were obtained from the whole blood of 39 patients and 43 healthy controls and total RNA was extracted. Genotyping was performed by amplification-refractory mutation system (ARMS)-PCR method. Afterward, the expression level of IL23R was analyzed by the real-time quantitative (Q)-PCR method. RESULTS We observed no significant association between the distribution of alleles and genotypes of rs1884444 and susceptibility to AS. In addition, the expression level of IL23R did not differ between PBMCs from AS patients compared to the control group (P = 0.167). Furthermore, the relative expression level of IL23R was positively correlated with the BASDAI (P < 0.01) and BASFI (P < 0.05) scores of the patients. CONCLUSION It appears that IL23R polymorphism (rs1884444) and the level of gene expression might not contribute to the susceptibility to AS in the Iranian population. The correlation of IL23R expression with the level of BASDAI and BASFI scores in patients may be due to the role of the IL-23/IL-23R signaling cascade in inflammation and exert a critical role in the development of AS.
Collapse
Affiliation(s)
- Atiyeh Mellati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, PO-Box: 5165683146, Iran
| | - Samaneh Soltani
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, PO-Box: 1476943313, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, PO-Box: 5165683146, Iran.
| | - Nooshin Ahmadzadeh
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, PO-Box: 1476943313, Iran
| | - Maryam Akhtari
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Madreseh
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, PO-Box: 1476943313, Iran
- Research Center For Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, PO-Box: 1476943313, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, PO-Box: 1476943313, Iran
- Research Center For Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, PO-Box: 1476943313, Iran.
- Research Center For Chronic Inflammatory Diseases, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kustrimovic N, Bilato G, Mortara L, Baci D. The Urinary Microbiome in Health and Disease: Relevance for Bladder Cancer. Int J Mol Sci 2024; 25:1732. [PMID: 38339010 PMCID: PMC10855347 DOI: 10.3390/ijms25031732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Bladder cancer (BC) constitutes one of the most diagnosed types of cancer worldwide. Advancements in and new methodologies for DNA sequencing, leading to high-throughput microbiota testing, have pinpointed discrepancies in urinary microbial fingerprints between healthy individuals and patients with BC. Although several studies suggest an involvement of microbiota dysbiosis in the pathogenesis, progression, and therapeutic response to bladder cancer, an established direct causal relationship remains to be elucidated due to the lack of standardized methodologies associated with such studies. This review compiles an overview of the microbiota of the human urinary tract in healthy and diseased individuals and discusses the evidence to date on microbiome involvement and potential mechanisms by which the microbiota may contribute to the development of BC. We also explore the potential profiling of urinary microbiota as a biomarker for risk stratification, as well as the prediction of the response to intravesical therapies and immunotherapy in BC patients. Further investigation into the urinary microbiome of BC patients is imperative to unravel the complexities of the role played by host-microbe interactions in shaping wellness or disease and yield valuable insights into and strategies for the prevention and personalized treatment of BC.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Giorgia Bilato
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- Molecular Cardiology Laboratory, IRCCS—Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
5
|
Targeted Sequencing of Cytokine-Induced PI3K-Related Genes in Ulcerative Colitis, Colorectal Cancer and Colitis-Associated Cancer. Int J Mol Sci 2022; 23:ijms231911472. [PMID: 36232773 PMCID: PMC9569582 DOI: 10.3390/ijms231911472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic relapsing inflammatory bowel disease is strongly linked to an increased risk of colitis-associated cancer (CAC). One of the well-known inflammatory carcinogenesis pathways, phosphatidylinositol 3-kinase (PI3K), was identified to be a crucial mechanism in long-standing ulcerative colitis (UC). The goal of this study was to identify somatic variants in the cytokine-induced PI3K-related genes in UC, colorectal cancer (CRC) and CAC. Thirty biopsies (n = 8 long-standing UC, n = 11 CRC, n = 8 paired normal colorectal mucosa and n = 3 CAC) were subjected to targeted sequencing on 13 PI3K-related genes using Illumina sequencing and the SureSelectXT Target Enrichment System. The Genome Analysis Toolkit was used to analyze variants, while ANNOVAR was employed to detect annotations. There were 5116 intronic, 355 exonic, 172 untranslated region (UTR) and 59 noncoding intronic variations detected across all samples. Apart from a very small number of frameshifts, the distribution of missense and synonymous variants was almost equal. We discovered changed levels of IL23R, IL12Rß1, IL12Rß2, TYK2, JAK2 and OSMR in more than 50% of the samples. The IL23R variant in the UTR region, rs10889677, was identified to be a possible variant that might potentially connect CAC with UC and CRC. Additional secondary structure prediction using RNAfold revealed that mutant structures were more unstable than wildtype structures. Further functional research on the potential variants is, therefore, highly recommended since it may provide insight on the relationship between inflammation and cancer risk in the cytokine-induced PI3K pathway.
Collapse
|
6
|
Friedrich V, Choi HW. The Urinary Microbiome: Role in Bladder Cancer and Treatment. Diagnostics (Basel) 2022; 12:diagnostics12092068. [PMID: 36140470 PMCID: PMC9497549 DOI: 10.3390/diagnostics12092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Commensal microbes have increasingly been found to be involved in the development and progression of cancer. The recent discovery of the urinary microbiome bolstered the notion that microbes might play a role in bladder cancer. Although microbial involvement in bladder neoplastic transformation and metastatic progression, except schisto somiasis, has not been established, accumulating research suggests that dysbiosis of the urinary microbiome can produce a chronically inflammatory urothelial microenvironment and lead to bladder cancer. In this review, we describe how the urinary microbiome might facilitate the development of bladder cancer by altering the host immune system and the kind of cytokines that are directly involved in these responses. We investigated the therapeutic possibilities of modulating the urinary microbiome, including immune checkpoint therapy. The responsiveness of patients to intravesical Bacillus Calmette-Guerin therapy was evaluated with respect to microbiome composition. We conclude by noting that the application of microbes to orchestrate the inflammatory response in the bladder may facilitate the development of treatments for bladder cancer.
Collapse
|
7
|
Cytokine-driven positive feedback loop organizes fibroblast transformation and facilitates gastric cancer progression. Clin Transl Oncol 2022; 24:1354-1364. [PMID: 35303266 DOI: 10.1007/s12094-022-02777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Gastric cancer (GC) is a malignancy that belongs to one of the most common leading causes of cancer death. Cancer-associated fibroblasts (CAFs) promote the GC cells' malignant behavior. It is still unknown how GC converts normal fibroblasts (NFs) to CAFs. METHODS GC cells were co-cultured with NFs. Bioinformatics was used to analyze the genes and signaling pathways that were changed in fibroblast. RT-PCR, western blot, and Elisa assays were used to detect the expression of cytokines in fibroblast and condition medium. Western blot and immunofluorescence demonstrated activation of relevant pathways in CAFs-like cells. Transwell, scrape, colony formation, and CCK-8 assays were performed to reveal the feedback effect of CAFs-like cells on GC cells. RESULTS GC promoted the conversion of NFs to CAFs by secreting Interleukin 17A (IL-17). It included both morphological and molecular marker changes. This process was achieved by activating the nuclear factor-κB (NF-κB) pathway. On the other hand, CAFs cells could secrete C-X-C Motif Chemokine Ligand 8 (IL-8, IL-8), which promoted the malignant phenotype of GC cells. In this way, a feedback loop of mutual influence was constructed in the GC and tumor microenvironment (TME). CONCLUSIONS Our research proved a novel model of GC-educated NFs. GC-IL-17-fibroblast-IL-8-GC axis might be a potential pathway of the interaction between GC and TME.
Collapse
|
8
|
Rs-10889677 variant in interleukin-23 receptor may contribute to creating an inflammatory milieu more susceptible to bladder tumourigenesis: report and meta-analysis. Immunogenetics 2021; 73:207-226. [PMID: 33665735 DOI: 10.1007/s00251-021-01205-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Bladder cancer (BLC) is a recurrent high-risk malignancy typified by an inherent localised chronic inflammation. IL-23-receptor (IL-23R), as a positive regulator in the priming of T helper-17 cells, is regarded a principal coordinator of inflammation-propelled neoplasia. In this article, we indented firstly to scrutinise the influence of rs10889677"A/C" SNP located in IL-23R-gene on BLC development and progression among Egyptians. Findings revealed that the rs10889677"C" allele was significantly associated with the increased BLC risk and its higher frequencies were plainly noticeable in high-grade and invasive tumours when applied the dominant/homozygous/allelic genetic models. Under the same genetic models, elevated serum levels of IL-23R protein in BLC patients were pertinently correlated with the rs10889677"A/C" polymorphism. As a corollary, the frequent up-regulation of IL-23R exerts a subsequent activation of the IL-23/17 inflammatory axis. That is experienced as a drastic increase in IL-23 and IL17 levels under the dominant/homozygous/heterozygous/recessive models. Second, study further described how the rs10889677 variant confers its pro-tumoural influences on IL-23R-bearing immune cells, involving tumour-associated macrophages (TAMs), natural killers (NKs) and CD4+ T-helper cells. When the dominant model was adopted, it was observed that patients bearing the rs10889677 "C" allele had lower counts of IL-23R-positive CD56+NKs and CD4+ T-cells, in tandem with higher levels of IL-23R-positive CD14+ TAMs compared with those with rs10889677 "A" allele. To entrench the idea, we did a meta-analysis on BLC patients from three different ethnicities (Asian, Caucasians and African). We observed that rs10889677"SNP" is significantly correlated with increased risk of BLCs in the overall population using over-dominant model. Consequently, authors suggested that the rs10889677 variant could be directly implicated in developing inflammatory environment more prone to generating malignancy.
Collapse
|