1
|
Shahid A, Bhatia M. Hydrogen Sulfide: A Versatile Molecule and Therapeutic Target in Health and Diseases. Biomolecules 2024; 14:1145. [PMID: 39334911 PMCID: PMC11430449 DOI: 10.3390/biom14091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, research has unveiled the significant role of hydrogen sulfide (H2S) in many physiological and pathological processes. The role of endogenous H2S, H2S donors, and inhibitors has been the subject of studies that have aimed to investigate this intriguing molecule. The mechanisms by which H2S contributes to different diseases, including inflammatory conditions, cardiovascular disease, viral infections, and neurological disorders, are complex. Despite noteworthy progress, several questions remain unanswered. H2S donors and inhibitors have shown significant therapeutic potential for various diseases. This review summarizes our current understanding of H2S-based therapeutics in inflammatory conditions, cardiovascular diseases, viral infections, and neurological disorders.
Collapse
Affiliation(s)
- Aqsa Shahid
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
2
|
Song Y, Cao S, Sun X, Chen G. The interplay of hydrogen sulfide and microRNAs in cardiovascular diseases: insights and future perspectives. Mamm Genome 2024; 35:309-323. [PMID: 38834923 DOI: 10.1007/s00335-024-10043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Hydrogen sulfide (H2S) is recognized as the third gasotransmitter, after nitric oxide (NO) and carbon monoxide (CO). It is known for its cardioprotective properties, including the relaxation of blood vessels, promotion of angiogenesis, regulation of myocardial cell apoptosis, inhibition of vascular smooth muscle cell proliferation, and reduction of inflammation. Additionally, abnormal H2S generation has been linked to the development of cardiovascular diseases (CVD), such as pulmonary hypertension, hypertension, atherosclerosis, vascular calcification, and myocardial injury. MicroRNAs (miRNAs) are non-coding, conserved, and versatile molecules that primarily influence gene expression by repressing translation and have emerged as biomarkers for CVD diagnosis. Studies have demonstrated that H2S can ameliorate cardiac dysfunction by regulating specific miRNAs, and certain miRNAs can also regulate H2S synthesis. The crosstalk between miRNAs and H2S offers a novel perspective for investigating the pathophysiology, prevention, and treatment of CVD. The present analysis outlines the interactions between H2S and miRNAs and their influence on CVD, providing insights into their future potential and advancement.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuo Cao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China.
| | - Guozhen Chen
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital, Yantai, Shandong, China.
| |
Collapse
|
3
|
Guo S, Zhang Y, Lian J, Su C, Wang H. The role of hydrogen sulfide in the regulation of necroptosis across various pathological processes. Mol Cell Biochem 2024:10.1007/s11010-024-05090-1. [PMID: 39138751 DOI: 10.1007/s11010-024-05090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Necroptosis is a programmed cell death form executed by receptor-interacting protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain-like protein (MLKL), which assemble into an oligomer called necrosome. Accumulating evidence reveals that necroptosis participates in many types of pathological processes. Hence, clarifying the mechanism of necroptosis in pathological processes is particularly important for the prevention and treatment of various diseases. For over 300 years, hydrogen sulfide (H2S) has been widely known in the scientific community as a toxic and foul-smelling gas. However, after discovering the important physiological and pathological functions of H2S, human understanding of this small molecule changed, believing that H2S is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO). H2S plays an important role in various diseases, but the related mechanisms are not yet fully understood. In recent years, more and more studies have shown that H2S regulation of necroptosis is involved in various pathological processes. Herein, we focus on the recent progress on the role of H2S regulation of necroptosis in different pathological processes and profoundly analyze the related mechanisms.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chunqi Su
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
4
|
Islam KN, Nguyen ID, Islam R, Pirzadah H, Malik H. Roles of Hydrogen Sulfide (H2S) as a Potential Therapeutic Agent in Cardiovascular Diseases: A Narrative Review. Cureus 2024; 16:e64913. [PMID: 39156383 PMCID: PMC11330631 DOI: 10.7759/cureus.64913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Cardiovascular disease (CVD) stands as one of the leading causes of morbidity and mortality worldwide, and the continued search for novel therapeutics is vital for addressing this global health challenge. Over the past decade, hydrogen sulfide (H₂S) has garnered significant attention in the field of medical research, as it has been proven to be a cardioprotective gaseous signaling molecule. It joins nitric oxide and carbon monoxide as endogenously produced gasotransmitters. As for its mechanism, H₂S functions through the posttranslational addition of a sulfur group to cysteine residues on target proteins in a process called sulfhydration. As a result, the observed physiological effects of H₂S can include vasodilation, anti-apoptosis, anti-inflammation, antioxidant effects, and regulation of ion channels. Various studies have observed the cardioprotective benefits of H₂S in diseases such as myocardial infarction, ischemia-reperfusion injury, cardiac remodeling, heart failure, arrhythmia, and atherosclerosis. In this review, we discuss the mechanisms and therapeutic potential of H₂S in various CVDs.
Collapse
Affiliation(s)
- Kazi N Islam
- Department of Agricultural Research Development Program, Central State University, Wilberforce, USA
| | - Ivan D Nguyen
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Rahib Islam
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Humza Pirzadah
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Hassan Malik
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| |
Collapse
|
5
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
6
|
Liu N, Zhen Z, Xiong X, Xue Y. Aerobic exercise protects MI heart through miR-133a-3p downregulation of connective tissue growth factor. PLoS One 2024; 19:e0296430. [PMID: 38271362 PMCID: PMC10810442 DOI: 10.1371/journal.pone.0296430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE To investigate the effect of aerobic exercise intervention to inhibit cardiomyocyte apoptosis and thus improve cardiac function in myocardial infarction (MI) mice by regulating CTGF expression through miR-133a-3p. METHODS Male C57/BL6 mice, 7-8 weeks old, were randomly divided into sham-operated group (S group), sham-operated +aerobic exercise group (SE group), myocardial infarction group (MI group) and MI + aerobic exercise group (ME group). The mice were anesthetized the day after training and cardiac function was assessed by cardiac echocardiography. Myocardial collagen volume fraction (CVF%) was analyzed by Masson staining. Myocardial CTGF, Bax and Bcl-2 were detected by Western blotting, and myocardial miR-133a-3p was measured by RT-qPCR. RESULTS Compared with the S group, miR-133a-3p, Bcl-2 and EF were significantly decreased and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly increased in the MI group. Compared with the MI group, miR-133a-3p, Bcl-2 and EF were significantly increased, cardiac function was significantly improved, and CTGF, Bax, Bax/ Bcl-2, Caspase 3, Cleaved Caspase-3, LVIDd, LVIDs and CVF were significantly decreased in ME group. The miR-133a-3p was significantly lower and CTGF was significantly higher in the H2O2 intervention group compared with the control group of H9C2 rat cardiomyocytes. miR-133a-3p was significantly higher and CTGF was significantly lower in the AICAR intervention group compared to the H2O2 intervention group. Compared with the control group of H9C2 rat cardiomyocytes, CTGF, Bax and Bax/Bcl-2 were significantly increased and Bcl-2 was significantly decreased in the miR-133a-3p inhibitor intervention group; CTGF, Bax and Bax/Bcl-2 were significantly decreased and Bcl-2 was significantly upregulated in the miR-133a-3p mimics intervention group. CONCLUSION Aerobic exercise down-regulated CTGF expression in MI mouse myocardium through miR-133a-3p, thereby inhibiting cardiomyocyte apoptosis and improving cardiac function.
Collapse
Affiliation(s)
- Niu Liu
- College of P.E, Beijing Normal University, Beijing, China
- School of Physical Education, Weinan Normal University, Weinan, Shaanxi, China
| | - Zhiping Zhen
- College of P.E, Beijing Normal University, Beijing, China
| | - Xin Xiong
- College of P.E, Beijing Normal University, Beijing, China
| | - Yaqi Xue
- College of P.E, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Ding Q, Song W, Zhu M, Yu Y, Lin Z, Hu W, Cai J, Zhang Z, Zhang H, Zhou J, Lei W, Zhu YZ. Hydrogen Sulfide and Functional Therapy: Novel Mechanisms from Epigenetics. Antioxid Redox Signal 2024; 40:110-121. [PMID: 37950704 DOI: 10.1089/ars.2023.0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter with significant physiological effects, including anti-inflammatory properties, regulation of oxidative stress, and vasodilation, thus regulating body functions. Functional therapy involves using treatments that target the underlying cause of a disease, rather than simply treating symptoms. Epigenetics refers to changes in gene expression that occur through modifications to DNA, to the proteins that package DNA, or to noncoding RNA mechanisms. Recent research advances suggest that H2S may play a role in epigenetic regulation by altering DNA methylation patterns and regulating histone deacetylases, enzymes that modify histone proteins, or modulating microRNA mechanisms. These critical findings suggest that H2S may be a promising molecule for functional therapy in various diseases where epigenetic modifications are dysregulated. We reviewed the relevant research progress in this area, hoping to provide new insights into the epigenetic mechanisms of H2S. Despite the challenges of clinical use of H2S, future research may lead to the progress of new therapeutic approaches. Antioxid. Redox Signal. 40, 110-121.
Collapse
Affiliation(s)
- Qian Ding
- University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wu Song
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Menglin Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Yue Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Hao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Junyang Zhou
- Biomedical Science, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Wei Lei
- University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Tao BB, Zhu Q, Zhu YC. Mechanisms Underlying the Hydrogen Sulfide Actions: Target Molecules and Downstream Signaling Pathways. Antioxid Redox Signal 2024; 40:86-109. [PMID: 37548532 DOI: 10.1089/ars.2023.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Significance: As a new important gas signaling molecule like nitric oxide (NO) and carbon dioxide (CO), hydrogen sulfide (H2S), which can be produced by endogenous H2S-producing enzymes through l-cysteine metabolism in mammalian cells, has attracted wide attention for long. H2S has been proved to play an important regulatory role in numerous physiological and pathophysiological processes. However, the deep mechanisms of those different functions of H2S still remain uncertain. A better understanding of the mechanisms can help us develop novel therapeutic strategies. Recent Advances: H2S can play a regulating role through various mechanisms, such as regulating epigenetic modification, protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. In addition to discussing the molecular mechanisms of H2S from the above perspectives, this article will review the regulation of H2S on common signaling pathways in the cells, including the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK), Janus kinase (JAK)/signal transducer, and activator of transcription (STAT) signaling pathway. Critical Issues: Although there are many studies on the mechanism of H2S, little is known about its direct target molecules. This article will also review the existing reports about them. Furthermore, the interaction between direct target molecules of H2S and the downstream signaling pathways involved also needs to be clarified. Future Directions: An in-depth discussion of the mechanism of H2S and the direct target molecules will help us achieving a deeper understanding of the physiological and pathophysiological processes regulated by H2S, and lay a foundation for developing new clinical therapeutic drugs in the future. Innovation: This review focuses on the regulation of H2S on signaling pathways and the direct target molecules of H2S. We also provide details on the underlying mechanisms of H2S functions from the following aspects: epigenetic modification, regulation of protein expression levels, protein activity, protein localization, redox microenvironment, and interaction with other gas signaling molecules such as NO and CO. Further study of the mechanisms underlying H2S will help us better understand the physiological and pathophysiological processes it regulates, and help develop new clinical therapeutic drugs in the future. Antioxid. Redox Signal. 40, 86-109.
Collapse
Affiliation(s)
- Bei-Bei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Qi Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
9
|
Wen JL, Ruan ZB, Wang F, Hu Y. Progress of circRNA/lncRNA-miRNA-mRNA axis in atrial fibrillation. PeerJ 2023; 11:e16604. [PMID: 38144204 PMCID: PMC10740593 DOI: 10.7717/peerj.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia that requires effective biomarkers and therapeutic targets for clinical management. In recent years, non-coding RNAs (ncRNAs) have emerged as key players in the pathogenesis of AF, particularly through the ceRNA (competitive endogenous RNA) mechanism. By acting as ceRNAs, ncRNAs can competitively bind to miRNAs and modulate the expression of target mRNAs, thereby influencing the biological behavior of AF. The ceRNA axis has shown promise as a diagnostic and prognostic biomarker for AF. This review provides a comprehensive overview of the roles of ncRNAs in the development and progression of AF, highlighting the intricate crosstalk between different ncRNAs in AF pathophysiology. Furthermore, we discuss the potential implications of targeting the circRNA/lncRNA-miRNA-mRNA axis for the diagnosis, prognosis, and therapeutic intervention of AF.
Collapse
Affiliation(s)
- Jia-le Wen
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Dalian Medical University, Dalian, China
| | - Zhong-bao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Fei Wang
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yuhua Hu
- Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Xue Z, Zhu J, Liu J, Wang L, Ding J. Research progress of non-coding RNA in atrial fibrillation. Front Cardiovasc Med 2023; 10:1210762. [PMID: 37522088 PMCID: PMC10379658 DOI: 10.3389/fcvm.2023.1210762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia in clinic, and its incidence is increasing year by year. In today's increasingly prevalent society, ageing poses a huge challenge to global healthcare systems. AF not only affects patients' quality of life, but also causes thrombosis, heart failure and other complications in severe cases. Although there are some measures for the diagnosis and treatment of AF, specific serum markers and targeted therapy are still lacking. In recent years, ncRNAs have become a hot topic in cardiovascular disease research. These ncRNAs are not only involved in the occurrence and development of AF, but also in pathophysiological processes such as myocardial infarction and atherosclerosis, and are potential biomarkers of cardiovascular diseases. We believe that the understanding of the pathophysiological mechanism of AF and the study of diagnosis and treatment targets can form a more systematic diagnosis and treatment framework of AF and provide convenience for individuals with AF and the society.
Collapse
|
11
|
Wang J, Guo R, Ma X, Wang Y, Zhang Q, Zheng N, Zhang J, Li C. Liraglutide inhibits AngII-induced cardiac fibroblast proliferation and ECM deposition through regulating miR-21/PTEN/PI3K pathway. Cell Tissue Bank 2023; 24:125-137. [PMID: 35792987 DOI: 10.1007/s10561-022-10021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cardiac fibrosis characterized with the aberrant proliferation of cardiac fibroblasts and extracellular matrix (ECM) deposition is a major pathophysiological feature of atrial fibrillation (AF). Liraglutide has exerted an alleviative role in various cardiovascular diseases, and can also regulate the level of microRNAs (miRNAs). It has been reported that miR-21 modulated cardiac fibrosis in AF. However, the regulative effect of liraglutide on atrial fibrosis via miR-21 and the underlying mechanism are still unclear. METHODS The atrial fibroblasts were isolated from the heart of C57BL/6 mice, and treated with Angiotensin II (AngII) and liraglutide. The proliferation, migration, and ECM deposition were determined by cell counting Kit-8 (CCK-8), Brdu, transwell assay, cell scratch, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot and immunofluorescence. The underlying mechanism was explored after transfection of miR-21 mimics into cells. RESULTS Liraglutide inhibited proliferation, migration, invasion of fibroblast cell and ECM deposition in AngII-stimulated cardiac fibroblasts. Additionally, liraglutide decreased the AngII-induced increase in the expression level of miR-21, but enhanced the expression of phosphatase and tensin homolog (PTEN), a target of miR-21, thereby suppressing the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Rescue assay confirmed that overexpression of miR-21 counteracted the ameliorative effect of liraglutide on the proliferation, migration, invasion and ECM deposition in fibroblasts stimulated by AngII. CONCLUSIONS Liraglutide dampened AngII-induced proliferation and migration, and ECM deposition of cardiac fibroblast via modulating miR-21/PTEN/PI3K pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China.
| | - Run Guo
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Xiaoli Ma
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Ying Wang
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Qianyu Zhang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Nan Zheng
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Jun Zhang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Chenchen Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| |
Collapse
|
12
|
Zhao H, Fu X, Zhang Y, Yang Y, Wang H. Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in myocardial diseases. Front Pharmacol 2023; 14:1172147. [PMID: 37124222 PMCID: PMC10133551 DOI: 10.3389/fphar.2023.1172147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important organelle for protein translation, folding and translocation, as well as the post-translational modification and assembly of newly synthesized secreted proteins. When the excessive accumulation of misfolded and/or unfolded proteins exceeds the processing capacity of ER, ER stress is triggered. The integrated intracellular signal cascade, namely the unfolded protein response, is induced to avoid ER stress. ER stress is involved in many pathological and physiological processes including myocardial diseases. For a long time, hydrogen sulfide (H2S) has been considered as a toxic gas with the smell of rotten eggs. However, more and more evidences indicate that H2S is an important gas signal molecule after nitric oxide and carbon monoxide, and regulates a variety of physiological and pathological processes in mammals. In recent years, increasing studies have focused on the regulatory effects of H2S on ER stress in myocardial diseases, however, the mechanism is not very clear. Therefore, this review focuses on the role of H2S regulation of ER stress in myocardial diseases, and deeply analyzes the relevant mechanisms so as to lay the foundation for the future researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Yihan Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang,
| |
Collapse
|
13
|
Wang R, Qi YF, Ding CH, Zhang D. Sulfur-containing amino acids and their metabolites in atrial fibrosis. Front Pharmacol 2022; 13:1063241. [DOI: 10.3389/fphar.2022.1063241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Atrial fibrosis, a symbol of atrial structural remodelling, is a complex process involved in the occurrence and maintenance of atrial fibrillation (AF). Atrial fibrosis is regulated by multiple factors. Sulfur containing amino acids and their metabolites, such as hydrogen sulfide (H2S) and taurine, can inhibit the process of atrial fibrosis and alleviate atrial remodeling. However, homocysteine can promote the activation of atrial fibroblasts and further promote atrial fibrosis. In this review, we will focus on the recent progress in atrial structural changes and molecular mechanisms of atrial fibrosis, as well as the regulatory roles and possible mechanisms of sulfur containing amino acids and their metabolites in atrial fibrosis. It is expected to provide new ideas for clarifying the mechanism of atrial fibrosis and finding targets to inhibit the progress of atrial fibrosis.
Collapse
|
14
|
Impact of the Gastrointestinal Tract Microbiota on Cardiovascular Health and Pathophysiology. J Cardiovasc Pharmacol 2022; 80:13-30. [PMID: 35384898 DOI: 10.1097/fjc.0000000000001273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The microbiota of the gastrointestinal tract (GIT) is an extremely diverse community of microorganisms, and their collective genomes (microbiome) provide a vast arsenal of biological activities, in particular enzymatic ones, which are far from being fully elucidated. The study of the microbiota (and the microbiome) is receiving great interest from the biomedical community as it carries the potential to improve risk-prediction models, refine primary and secondary prevention efforts, and also design more appropriate and personalized therapies, including pharmacological ones. A growing body of evidence, though sometimes impaired by the limited number of subjects involved in the studies, suggests that GIT dysbiosis, i.e. the altered microbial composition, has an important role in causing and/or worsening cardiovascular disease (CVD). Bacterial translocation as well as the alteration of levels of microbe-derived metabolites can thus be important to monitor and modulate, because they may lead to initiation and progression of CVD, as well as to its establishment as chronic state. We hereby aim to provide readers with details on available resources and experimental approaches that are used in this fascinating field of biomedical research, and on some novelties on the impact of GIT microbiota on CVD.
Collapse
|
15
|
Wren G, Davies W. Sex-linked genetic mechanisms and atrial fibrillation risk. Eur J Med Genet 2022; 65:104459. [PMID: 35189376 DOI: 10.1016/j.ejmg.2022.104459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 01/14/2023]
Abstract
Atrial fibrillation (AF) is a cardiac condition characterised by an irregular heartbeat, atrial pathology and an elevated downstream risk of thrombosis and heart failure, as well as neurological sequelae including stroke and dementia. The prevalence and presentation of, risk factors for, and therapeutic responses to, AF differ by sex, and this sex bias may be partially explained in terms of genetics. Here, we consider four sex-linked genetic mechanisms that may influence sex-biased phenotypes related to AF and provide examples of each: X-linked gene dosage, X-linked genomic imprinting, sex-biased autosomal gene expression, and male-limited Y-linked gene expression. We highlight novel candidate risk genes and pathways that warrant further investigation in clinical and preclinical studies. Understanding the biological basis of sex differences in AF should allow better prediction of disease risk, identification of novel risk/protective factors, and the development of more effective sex-tailored interventions.
Collapse
Affiliation(s)
| | - William Davies
- School of Psychology, Cardiff University, UK; School of Medicine, Cardiff University, UK.
| |
Collapse
|
16
|
Hu HJ, Wang XH, Liu Y, Zhang TQ, Chen ZR, Zhang C, Tang ZH, Qu SL, Tang HF, Jiang ZS. Hydrogen Sulfide Ameliorates Angiotensin II-Induced Atrial Fibrosis Progression to Atrial Fibrillation Through Inhibition of the Warburg Effect and Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:690371. [PMID: 34950023 PMCID: PMC8689064 DOI: 10.3389/fphar.2021.690371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-β-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China
| | - Xiu-Heng Wang
- Department of Nuclear Medicine Lab, First Affiliated Hospital of University of South China, Hengyang, China
| | - Yao Liu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Tian-Qing Zhang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zheng-Rong Chen
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Chi Zhang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China.,Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|