1
|
Liang Q, He L, Wang J, Tang D, Wu C, Peng W. Targeting IL-17 and its receptors: A feasible way for natural herbal medicines to modulate fibroblast-like synoviocytes in rheumatoid arthritis. Biochem Pharmacol 2024:116598. [PMID: 39481657 DOI: 10.1016/j.bcp.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Rheumatoid arthritis (RA) is characterized by processive synovial hyperplasia and abnormal proliferation of fibroblast-like synoviocytes (FLSs), and can eventually lead to progressive joint destruction. Increasing evidence has demonstrated that cytokines play pivotal roles in the pathogenesis of RA. In particular, the production of interleukin (IL)-17 by T helper 17 (Th17) cells is closely associated with the development of RA, and inhibition of IL-17/IL-17R could regulate the production of inflammatory factors by FLSs, which may be a feasible way to reduce inflammation and bone destruction in RA. Currently, accumulating evidence suggests that the utilization of natural herbal medicines is advantageous in the management of RA. In our present paper, a comprehensive reference search was conducted of the classic Materia Medica books, literature, online databases, academic search engines, and MS. or Ph. D theses. In conclusion, natural herbal medicines with antirheumatic activities that modulate FLSs by targeting IL-17/IL-17R were summarized. Furthermore, we also discuss the limitations and potential research directions for the future development of natural herbal medicines as candidate drugs for RA management in the clinic.
Collapse
Affiliation(s)
- Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lin He
- Sichuan Provincial Institute for Drug Control, Chengdu 611731, PR China
| | - Jingwen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dandan Tang
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, PR China
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
Guo C, Sharma AK, Guzmán J, Herrmann C, Boulant S, Stanifer ML. Interleukin-22 Promotes Cell Proliferation to Combat Virus Infection in Human Intestinal Epithelial Cells. J Interferon Cytokine Res 2024; 44:438-452. [PMID: 39076109 DOI: 10.1089/jir.2024.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Interferon lambdas (IFN-λs) are crucial to control virus infections at mucosal surfaces. Interleukin-22 (IL-22) was reported to help IFN-λ control rotavirus infection in the intestinal epithelium of mice either by aiding in the induction of interferon-stimulated genes (ISGs) or by increasing cell proliferation thereby clearing virally infected cells. We investigated whether IL-22 and IFN-λs exhibit similar synergistic effects in human intestinal epithelial cells (IECs) models. Our results showed that co-treatment of IL-22 and IFN-λ induced more phosphorylation of STAT1 than either cytokine used alone. However, this increased STAT1 activation did not translate to increased ISGs production or antiviral protection. Transcriptomics analysis revealed that despite sharing a common subunit (IL-10Rb) within their heterodimeric receptors and activating similar STATs, the signaling generated by IL-22 and IFN-λs is independent, with IFN-λ signaling inducing ISGs and IL-22 signaling inducing cell proliferation genes. Using human intestinal organoids, we confirmed that IL-22 increased the size of the organoids through increased cell proliferation and expression of the stem cell marker (OLFM4). These findings suggest that in human intestinal cells, IFN-λs and IL-22 act independently to clear virus infections. IFN-λs induce ISGs to control virus replication and spread, whereas IL-22 increases cell proliferation to eliminate infected cells and repair the damage epithelium. Although these two cytokines do not act synergistically, each plays a key function in the protection of human IECs.
Collapse
Affiliation(s)
- Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ashwini Kumar Sharma
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University and BioQuant, Heidelberg, Germany
| | - José Guzmán
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carl Herrmann
- Institute for Pharmacy and Molecular Biotechnology, Heidelberg University and BioQuant, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Megan L Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Wen Z, Qiu L, Ye Z, Tan X, Xu X, Lu M, Kuang G. The role of Th/Treg immune cells in osteoarthritis. Front Immunol 2024; 15:1393418. [PMID: 39364408 PMCID: PMC11446774 DOI: 10.3389/fimmu.2024.1393418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent clinical condition affecting the entire joint, characterized by its multifactorial etiology and complex pathophysiology. The onset of OA is linked to inflammatory mediators produced by the synovium, cartilage, and subchondral bone, all of which are closely tied to cartilage degradation. Consequently, OA may also be viewed as a systemic inflammatory disorder. Emerging studies have underscored the significance of T cells in the development of OA. Notably, imbalances in Th1/Th2 and Th17/Treg immune cells may play a crucial role in the pathogenesis of OA. This review aims to compile recent advancements in understanding the role of T cells and their Th/Treg subsets in OA, examines the immune alterations and contributions of Th/Treg cells to OA progression, and proposes novel directions for future research, including potential therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zhi Wen
- Department of Joint Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Liguo Qiu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zifeng Ye
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xuyi Tan
- Department of Joint Orthopedics, The Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xiaotong Xu
- Department of Joint Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Min Lu
- Department of Joint Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gaoyan Kuang
- Department of Joint Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Moghaddami R, Mahdipour M, Ahmadpour E. Inflammatory pathways of Toxoplasmagondii infection in pregnancy. Travel Med Infect Dis 2024; 62:102760. [PMID: 39293589 DOI: 10.1016/j.tmaid.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Toxoplasma gondii (T. gondii), an obligate intracellular parasite, is considered as an opportunistic infection and causes toxoplasmosis in humans and animals. Congenital toxoplasmosis can influence pregnancy and cause mild to severe consequences for the fetal and neonatal. During early T. gondii infection, neutrophils as the most abundant white blood cells provide a front line of defense mechanism against infection. The activated dendritic cells are then responsible for initiating an inflammatory response via T-helper 1 (Th1) cells. As part of its robust immune response, the infected host cells produce interferon (IFN-γ). IFN-γ inhibits T. gondii replication and promotes its transformation from an active form to tissue cysts. Although anti- T. gondii antibodies play an important role in infection control, T-helper 2 (Th2) immune response, can facilitate the growth and proliferation of T. gondii in the host cell. In pregnant women infected with T. gondii, the expression of cytokines may vary and in response diverse outcomes are expected. Cytokine profiles serve as valuable indicators for estimating the patho-immunological effects of T. gondii infection. This demonstrates the intricate relationship between pro-inflammatory and anti-inflammatory cytokines, as well as their influence on the various pregnancy outcomes in T. gondii infection.
Collapse
Affiliation(s)
- Reyhaneh Moghaddami
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Laska J, Tota M, Łacwik J, Sędek Ł, Gomułka K. IL-22 in Atopic Dermatitis. Cells 2024; 13:1398. [PMID: 39195286 PMCID: PMC11353104 DOI: 10.3390/cells13161398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin condition characterized by a multifaceted pathophysiology that gives rise to diverse clinical manifestations. The management of AD remains challenging due to the suboptimal efficacy of existing treatment options. Nonetheless, recent progress in elucidating the underlying mechanisms of the disease has facilitated the identification of new potential therapeutic targets and promising drug candidates. In this review, we summarize the newest data, considering multiple connections between IL-22 and AD. The presence of circulating IL-22 has been found to correlate with the severity of AD and is identified as a critical factor driving the inflammatory response associated with the condition. Elevated levels of IL-22 in patients with AD are correlated with increased proliferation of keratinocytes, alterations in the skin microbiota, and impaired epidermal barrier function. Collectively, these factors contribute to the manifestation of the characteristic symptoms observed in AD.
Collapse
Affiliation(s)
- Julia Laska
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maciej Tota
- Student Research Group of Internal Medicine and Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
6
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
7
|
Ma CS, Tangye SG. STAT3 gain of function: Too much of a good thing in the skin! J Exp Med 2024; 221:e20240849. [PMID: 38949650 PMCID: PMC11215521 DOI: 10.1084/jem.20240849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Germline activating mutations in STAT3 cause a multi-systemic autoimmune and autoinflammatory condition. By studying a mouse model, Toth et al. (https://doi.org/10.1084/jem.20232091) propose a role for dysregulated IL-22 production by Th17 cells in causing some aspects of immune-mediated skin inflammation in human STAT3 GOF syndrome.
Collapse
Affiliation(s)
- Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, Darlinghurst, Australia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, Darlinghurst, Australia
| |
Collapse
|
8
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Qiu H, Liu J, Wu Q, Ong H, Zhang Y, Huang X, Yuan T, Zheng R, Deng H, Wang W, Kong W, Wang X, Wang D, Yang Q. An in vitro study of the impact of IL-17A and IL-22 on ciliogenesis in nasal polyps epithelium via the Hippo-YAP pathway. J Allergy Clin Immunol 2024:S0091-6749(24)00714-0. [PMID: 39033934 DOI: 10.1016/j.jaci.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cilia loss and impaired motile ciliary functions are among the typical pathological features of chronic rhinosinusitis with nasal polyps (CRSwNP). IL17A and IL22 are the canonical cytokines of type 3 inflammation, exhibiting similar functional effects on epithelial cells. In this study, we sought to examine the effects of IL17A and IL22 on ciliated cells and investigate the potential involvement of Hippo-YAP signaling in their influence on ciliogenesis. METHODS We assessed both the mRNA and protein expression levels of IL17A and IL22 in nasal tissues obtained from patients with CRSwNP and compared them to those from healthy controls. To further explore the impact of IL17A and IL22, we established a primary human nasal epithelial cell model using different concentrations (2 ng/mL, 10 ng/mL, 50 ng/mL) for a duration of 28 days in an air-liquid interface culture. Additionally, we employed the inhibitor verteporfin to investigate whether IL17A and IL22 exert their effects on ciliated cells via the Hippo-YAP pathway. RESULTS The mRNA and protein levels of IL17A and IL22 in CRSwNP were significantly higher than those in healthy controls, revealing a robust correlation between IL17A and IL22. YAP was highly expressed in the nucleus of ciliated cells in CRSwNP and displayed a positive correlation with clinical symptoms. Both IL17A and IL22 were found to reduce the number of ciliated cells. IL17A, but not IL22, suppressed ciliogenesis by disrupting the proper development and docking of the basal body of ciliated cells, resulting in motile ciliary dysfunctions. Furthermore, the expression of YAP within the nucleus of ciliated cells gradually declined as these cells reached the final stage of differentiation. However, this process was obstructed by IL17A only. YAP inhibitors, such as verteporfin, markedly reversed the effects of IL17A by increasing the proportion of ciliated cells, suppressing nuclear YAP expression in these cells, and enhancing ciliary beating frequency. CONCLUSIONS Both IL17A and IL22 are overexpressed in nasal epithelium of CRSwNP, which is associated with the impairment of epithelial cell differentiation. Furthermore, IL17A has been shown to exert a disruptive effect on morphogenesis of motile cilia via activation of YAP.
Collapse
Affiliation(s)
- Huijun Qiu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qingwu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hsiaohui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yana Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Yuan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyi Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weihao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Kong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deyun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Yu D, Yang G, Mo J, Zhang M, Xia H, Gan Z, Lu Y. Identification and functional characterization of interleukin-22 (IL-22) in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109598. [PMID: 38697375 DOI: 10.1016/j.fsi.2024.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
In mammals, IL-22 is considered as a critical cytokine regulating of immunity and homeostasis at barrier surfaces. Although IL-22 have been functional characterization in different species of fish, the studies about distinct responses of IL-22 in different organs/tissues/cell types is rather limited. Here, we identified and cloned IL-22 gene (named as Ec-IL-22) from grouper (Epinephelus coioides). Ec-IL-22 gene was detected in all orangs/tissues examined, and was induced in intestine, gill, spleen, head kidney, and primary head kidney/intestine leukocytes following the stimulation of LPS and poly (I:C), as well as Vibrio harveyi and Singapore grouper iridovirus infection (SGIV). In addition, the stimulation of DSS could induce the expression of Ec-IL-22 in intestine and primary leukocytes from intestine. Importantly, the treatment of recombinant Ec-IL-22 induced the mRNA level of proinflammatory cytokines in primary intestine/head kidney leukocytes. The present results improve the understanding of expression patterns and functional characteristics of fish IL-22 in different organs/tissues/cell types.
Collapse
Affiliation(s)
- Dapeng Yu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Guanjian Yang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Hongli Xia
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
11
|
Ye Q, Huang S, Wang Y, Chen S, Yang H, Tan W, Wu Z, Wang A, Chen Y. Wogonin improves colitis by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155425. [PMID: 38518634 DOI: 10.1016/j.phymed.2024.155425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.
Collapse
Affiliation(s)
- Qiujuan Ye
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shaowei Huang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ying Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Shuze Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Huiping Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Weihao Tan
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zaoxuan Wu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Anjiang Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China.
| |
Collapse
|
12
|
Zeng Q, Liu X, Tang Y, Li Z, Yang Y, Hu N, Liu Q, Zhou Z. Evolutionarily conserved IL-22 participates in gut mucosal barrier through its receptors IL-22BP, IL-10R2 and IL-22RA1 during bacterial infection in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105110. [PMID: 38081403 DOI: 10.1016/j.dci.2023.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
IL-22 is a critical cytokine of epithelial mucosal barrier. In humans, IL-22 signals through a heteroduplex receptor consisting of IL-22R and IL-10Rβ. In fish, IL-22 and its receptors homologues have been cloned in a number of species, however, no studies have been reported how the receptors are involved in IL-22 transduction. For this purpose, in this study we identified IL-22 and its soluble receptor IL-22BP and transmembrane receptors IL-22RA1 and IL-10R2 in Carassius cuvieri × Carassius auratus red var. (named WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1, respectively). WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1 were relatively conserved in the evolutionary process, sharing the same conserved domains as their higher vertebrate homologues. When the fish were infected with the Aeromonas hydrophila, the expression of WR-IL-22, WR-IL-22BP, WR-IL10R2 and WR-IL22RA1 were significantly induced in the gut. The co-IP assay showed that WR-IL-22 not only interacted with WR-IL-22BP, but also with WR-IL10R2 and WR-IL22RA1. When introduced in vivo, WR-IL-22 activated the JAK1-STAT3 axis and protected the gut mucosa from A. hydrophila infection. However, overexpression of WR-IL-22BP or knockdown of transmembrane receptors WR-IL10R2 and WR-IL22RA1 significantly inhibited the activation of WR-IL-22-mediated JAK1-STAT3 axis and promoted bacterial colonization in the gut. These results provided new insights into the role of IL-22 and its receptors in the gut mucosa barrier and immune response in teleost.
Collapse
Affiliation(s)
- Qiongyao Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhengwei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ye Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Niewen Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511466, China.
| |
Collapse
|