1
|
Orooji N, Fadaee M, Kazemi T, Yousefi B. Exosome therapeutics for non-small cell lung cancer tumorigenesis. Cancer Cell Int 2024; 24:360. [PMID: 39478574 PMCID: PMC11523890 DOI: 10.1186/s12935-024-03544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an ongoing health concern, with poor treatment options and prognosis for many patients. Typically, individuals with lung cancer are detected at the middle and terminal stages, resulting in poor medical results due to lack of initial diagnosis and treatment. So, finding the initial specific and effective therapy options for lung cancer is necessary. In addition, exosomes are generally small lipid vesicles with a diameter in the nanometer range that are created and released by different cell types. Exosomes have therapeutic potential through delivering bioactive compounds including microRNAs, siRNAs, and therapeutic proteins to tumor cells, modifying the tumor microenvironment, and promoting anti-tumor immune responses. In recent years, exosome-based therapy has become known as an appropriate approach for NSCLC treatment. This review offers an overview of the possibility of exosome-based therapy for NSCLC, with an emphasis on mechanisms of action, preclinical research, and current clinical trials. Preclinical studies have shown that exosome-based therapy can decrease tumor growth, metastasis, and drug resistance in NSCLC models. Furthermore, ongoing clinical trials are looking at the safety and efficacy of exosome-based therapies in NSCLC patients, offering important insights into their translational prospects. Despite promising preclinical evidences, significant obstacles remain, including optimizing exosome isolation and purification techniques, standardizing production strategies, and developing scalable manufacturing processes. Overall, exosome-based therapy shows significant promise as a novel and various methods for treating NSCLC, with the potential to enhance patient outcomes and evolution cancer treatment.
Collapse
Affiliation(s)
- Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Science, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
2
|
Torsello M, Animini M, Gualandi C, Perut F, Pollicino A, Boi C, Focarete ML. Nanostructured Affinity Membrane to Isolate Extracellular Vesicles from Body Fluids for Diagnostics and Regenerative Medicine. MEMBRANES 2024; 14:206. [PMID: 39452818 PMCID: PMC11509411 DOI: 10.3390/membranes14100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Electrospun regenerated cellulose (RC) nanofiber membranes were prepared starting from cellulose acetate (CA) with different degrees of substitution. The process was optimized to obtain continuous and uniformly sized CA fibers. After electrospinning, the CA membranes were heat-treated to increase their tensile strength before deacetylation to obtain regenerated cellulose (RC). Affinity membranes were obtained by functionalization, exploiting the hydroxyl groups on the cellulose backbone. 1,4-Butanediol-diglycidyl ether was used to introduce epoxy groups onto the membrane, which was further bioconjugated with the anti-CD63 antibody targeting the tetraspanin CD63 on the extracellular vesicle membrane surface. The highest ligand density was obtained with an anti-CD63 antibody concentration of 6.4 µg/mL when bioconjugation was performed in carbonate buffer. The resulting affinity membrane was tested for the adsorption of extracellular vesicles (EVs) from human platelet lysate, yielding a very promising binding capacity above 10 mg/mL and demonstrating the suitability of this approach.
Collapse
Affiliation(s)
- Monica Torsello
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
| | - Margherita Animini
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
| | - Chiara Gualandi
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Antonino Pollicino
- Department of Civil Engineering and Architecture, University of Catania, V.le A.Doria 6, 95125 Catania, Italy;
| | - Cristiana Boi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| | - Maria Letizia Focarete
- Department of Chemistry “G. Ciamician” and INSTM (National Interuniversity Consortium of Materials Science and Technology) UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.T.); (M.A.); (C.G.); (M.L.F.)
- Interdepartmental Center for Industrial Research on Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy
| |
Collapse
|
3
|
Lin H, Zhou J, Ding T, Zhu Y, Wang L, Zhong T, Wang X. Therapeutic potential of extracellular vesicles from diverse sources in cancer treatment. Eur J Med Res 2024; 29:350. [PMID: 38943222 PMCID: PMC11212438 DOI: 10.1186/s40001-024-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Cancer, a prevalent and complex disease, presents a significant challenge to the medical community. It is characterized by irregular cell differentiation, excessive proliferation, uncontrolled growth, invasion of nearby tissues, and spread to distant organs. Its progression involves a complex interplay of several elements and processes. Extracellular vesicles (EVs) serve as critical intermediaries in intercellular communication, transporting critical molecules such as lipids, RNA, membrane, and cytoplasmic proteins between cells. They significantly contribute to the progression, development, and dissemination of primary tumors by facilitating the exchange of information and transmitting signals that regulate tumor growth and metastasis. However, EVs do not have a singular impact on cancer; instead, they play a multifaceted dual role. Under specific circumstances, they can impede tumor growth and influence cancer by delivering oncogenic factors or triggering an immune response. Furthermore, EVs from different sources demonstrate distinct advantages in inhibiting cancer. This research examines the biological characteristics of EVs and their involvement in cancer development to establish a theoretical foundation for better understanding the connection between EVs and cancer. Here, we discuss the potential of EVs from various sources in cancer therapy, as well as the current status and future prospects of engineered EVs in developing more effective cancer treatments.
Collapse
Affiliation(s)
- Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jun Zhou
- Department of Laboratory Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550000, China
| | - Tao Ding
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Vafaeizadeh M, Abroun S, Soufi Zomorrod M. Effect of human bone marrow mesenchymal stem cell-derived microvesicles on the apoptosis of the multiple myeloma cell line U266. J Cancer Res Clin Oncol 2024; 150:299. [PMID: 38850382 PMCID: PMC11162395 DOI: 10.1007/s00432-024-05822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Microvesicles are membraned particles produced by different types of cells recently investigated for anticancer purposes. The current study aimed to investigate the effects of human bone marrow mesenchymal stem cell-derived microvesicles (BMSC-MVs) on the multiple myeloma cell line U266. BMSC-MVs were isolated from BMSCs via ultracentrifugation and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). U266 cells were treated with 15, 30, 60, and 120 µg/mL BMSC-MVs for three and seven days and the effects of treatment in terms of viability, cytotoxicity, and DNA damage were investigated via the MTT assay, lactate dehydrogenase (LDH) assay, and 8‑hydroxy-2'-deoxyguanosine (8‑OHdG) measurement, respectively. Moreover, the apoptosis rate of the U266 cells treated with 60 µg/mL BMSC-MVs was also assessed seven days following treatment via flow cytometry. Ultimately, the expression level of BCL2, BAX, and CCND1 by the U266 cells was examined seven days following treatment with 60 µg/mL BMSC-MVs using qRT-PCR. RESULTS BMSC-MVs had an average size of ~ 410 nm. According to the MTT and LDH assays, BMSC-MV treatment reduced the U266 cell viability and mediated cytotoxic effects against them, respectively. Moreover, elevated 8‑OHdG levels following BMSC-MV treatment demonstrated a dose-dependent increase of DNA damage in the treated cells. BMSC-MV-treated U266 cells also exhibited an increased apoptosis rate after seven days of treatment. The expression level of BCL2 and CCND1 decreased in the treated cells whereas the BAX expression demonstrated an incremental pattern. CONCLUSIONS Our findings accentuate the therapeutic benefit of BMSC-MVs against the multiple myeloma cell line U266 and demonstrate how microvesicles could be of therapeutic advantage. Future in vivo studies could further corroborate these findings.
Collapse
Affiliation(s)
- Mona Vafaeizadeh
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Zhu J, Luo J, Hua Z, Feng X, Cao X. SERS microfluidic chip integrated with double amplified signal off-on strategy for detection of microRNA in NSCLC. BIOMEDICAL OPTICS EXPRESS 2024; 15:594-607. [PMID: 38404336 PMCID: PMC10890848 DOI: 10.1364/boe.514425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
In this work, based on Fe3O4@AuNPs and double amplified signal Off-On strategy, a simple and sensitive SERS microfluidic chip was constructed to detect microRNA associated with non-small cell lung cancer (NSCLC). Fe3O4@AuNPs have two advantages of SERS enhanced and magnetic adsorption, the introduction of microfluidic chip can realize double amplification of SERS signal. First, the binding of complementary ssDNA and hpDNA moved the Raman signaling molecule away from Fe3O4@AuNPs, at which point the signal was turned off. Second, in the presence of the target microRNA, they were captured by complementary ssDNA and bound to them. HpDNA restored the hairpin conformation, the Raman signaling molecule moved closer to Fe3O4@AuNPs. At this time, the signal was turned on and strong Raman signal was generated. And last, through the magnetic component of SERS microfluidic chip, Fe3O4@AuNPs could be enriched to realize the secondary enhancement of SERS signal. In this way, the proposed SERS microfluidic chip can detect microRNA with high sensitivity and specificity. The corresponding detection of limit (LOD) for miR-21 versus miR-125b was 6.38 aM and 7.94 aM, respectively. This SERS microfluidic chip was promising in the field of early detection of NSCLC.
Collapse
Affiliation(s)
- Jiashan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jinhua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhaolai Hua
- People's Hospital of Yangzhong City, Zhenjiang 212000, Jiangsu, China
| | - Xiang Feng
- People's Hospital of Yangzhong City, Zhenjiang 212000, Jiangsu, China
| | - Xiaowei Cao
- People's Hospital of Yangzhong City, Zhenjiang 212000, Jiangsu, China
| |
Collapse
|
6
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
7
|
Araki Y, Asano N, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Higuchi T, Abe K, Taniguchi Y, Yonezawa H, Morinaga S, Asano Y, Yoshida T, Hanayama R, Matsuzaki J, Ochiya T, Kawai A, Tsuchiya H. A validation study for the utility of serum microRNA as a diagnostic and prognostic marker in patients with osteosarcoma. Oncol Lett 2023; 25:222. [PMID: 37153065 PMCID: PMC10157352 DOI: 10.3892/ol.2023.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
In our previous study, osteosarcoma advanced locally, and metastasis was promoted through the secretion of large number of small extracellular vesicles, followed by suppressing osteoclastogenesis via the upregulation of microRNA (miR)-146a-5p. An additional 12 miRNAs in small extracellular vesicles were also detected ≥6× as frequently in high-grade malignancy with the capacity to metastasize as in those with a low metastatic potential. However, the utility of these 13 miRNAs for determining the prognosis or diagnosis of osteosarcoma has not been validated in the clinical setting. In the present study, the utility of these miRNAs as prognostic and diagnostic markers was therefore assessed. In total, 30 patients with osteosarcoma were retrospectively reviewed, and the survival rate was compared according to the serum miRNA levels in 27 patients treated with chemotherapy and surgery. In addition, to confirm diagnostic competency for osteosarcoma, the serum miRNA levels were compared with those in patients with other bone tumors (n=112) and healthy controls (n=275). The patients with osteosarcoma with high serum levels of several miRNAs (miR-146a-5p, miR-1260a, miR-487b-3p, miR-1260b and miR-4758-3p) exhibited an improved survival rate compared with those with low levels. In particular, patients with high serum levels of miR-1260a exhibited a significantly improved overall survival rate, metastasis-free survival rate and disease-free survival rate compared with those with low levels. Thus, serum miR-1260a may potentially be a prognostic marker for patients with osteosarcoma. Moreover, patients with osteosarcoma had higher serum miR-1261 levels than those with benign or intermediate-grade bone tumors and thus may be a potential therapeutic target, in addition to being useful for differentiating whether or not a bone tumor is high-grade. A larger investigation is required to clarify the actual utility of these miRNAs in the clinical setting.
Collapse
Affiliation(s)
- Yoshihiro Araki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Naofumi Asano
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
- Correspondence to: Professor Norio Yamamoto, Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan, E-mail:
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Akihiko Takeuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takashi Higuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kensaku Abe
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yuta Taniguchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hirotaka Yonezawa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sei Morinaga
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yohei Asano
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takeshi Yoshida
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
8
|
Xiong J, Fu F, Yu F, He X. Advances of exosomal miRNAs in the diagnosis and treatment of ovarian cancer. Discov Oncol 2023; 14:65. [PMID: 37160813 PMCID: PMC10169985 DOI: 10.1007/s12672-023-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Ovarian cancer is a tumor with the highest fatalities among female malignant tumors. This disease has no typical symptoms in its early stage, and most of the patients are in an advanced stage when being treated. The treatment effect is poor and it is easy to develop chemotherapy resistance. Therefore, it is particularly urgent to clarify the pathogenesis of ovarian cancer, explore its early diagnosis of biomarkers, and discover new treatment methods. As a carrier of intercellular information and genetic material transfer, exosomes are widely distributed in body fluids (e.g. blood and urine), which are regarded as latent tumor markers and take effects on tumor occurrence and invasion. Several articles have recently signified that exosomal miRNAs are widely implicated in the formation of the ovarian cancer tumor microenvironment, disease initiation and progression, and the generation of chemotherapy resistance. This article reviews the research on exosomal miRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Fen Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Feng Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China.
| |
Collapse
|
9
|
Sargazi S, Siddiqui B, Qindeel M, Rahdar A, Bilal M, Behzadmehr R, Mirinejad S, Pandey S. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer. Carbohydr Polym 2022; 290:119489. [DOI: 10.1016/j.carbpol.2022.119489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
|
10
|
Identification of differentially expressed miRNAs derived from serum exosomes associated with gastric cancer by microarray analysis. Clin Chim Acta 2022; 531:25-35. [PMID: 35300960 DOI: 10.1016/j.cca.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
AIMS To explore the differentially expressed microRNAs (DEMs) in serum exosomes between gastric cancer (GC) patients and healthy people to provide new targets for GC diagnosis and treatment. METHODS DEMs in serum exosomes were screened by microarray analysis and verified by RT-qPCR. The target genes of DEMs were predicted using Targetscan and miRTarBase databases and then overlapped with the DEGs of STAD in TCGA database to obtain the common target genes. Biological function and pathway enrichment were analyzed using enrichr database, and a PPI network was constructed using STRING database. The potential target genes of DEMs were identified using the MCODE and cytoHubba plug-ins of Cytoscape software. Survival analysis were conducted using KMP and TCGA databases. The DEMs -target genes-pathways network was established using Cytoscape software. A Cox proportional hazards regression model formed by optimal target genes was used to access the reliability of this prediction process. RESULTS Three serum exosomal microRNAs (exo-miRNAs, has-miR-1273 g-3p, has-miR-4793-3p, has-miR-619-5p) were identified to be highly expressed in GC patients and performed excellent diagnostic ability. A total of 179 common target genes related to GC were predicted. They were mainly involved in 79 GO functional annotations and 6 KEGG pathways. The prognostic model formed by eight optimal target genes (TIMELESS, DNA2, MELK, CHAF1B, DBF4, PAICS, CHEK1 and NCAPG2), which were low-risk genes of GC, also performed perfect prognostic ability. CONCLUSIONS Serum exosomal has-miR-1273 g-3p, has-miR-4793-3p and has-miR-619-5p can be used as new diagnostic biomarkers for GC. Among them, serum exosomal hsa-miR-1273 g-3p / hsa-miR-4793-3p targets MELK and hsa-miR-619-5p targets NCAPG2 were identified as novel mechanisms involved in the development of GC. It provides new targets for the diagnosis and treatment of GC by exo-miRNAs.
Collapse
|
11
|
Yang K, Zhou Q, Qiao B, Shao B, Hu S, Wang G, Yuan W, Sun Z. Exosome-derived noncoding RNAs: Function, mechanism, and application in tumor angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:983-997. [PMID: 35317280 PMCID: PMC8905256 DOI: 10.1016/j.omtn.2022.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exosomes are extracellular vesicles released by various cell types that perform various biological functions, mainly mediating communication between different cells, especially those active in cancer. Noncoding RNAs (ncRNAs), of which there are many types, were recently identified as enriched and stable in the exocrine region and play various roles in the occurrence and progression of cancer. Abnormal angiogenesis has been confirmed to be related to human cancer. An increasing number of studies have shown that exosome-derived ncRNAs play an important role in tumor angiogenesis. In this review, we briefly outline the characteristics of exosomes, ncRNAs, and tumor angiogenesis. Then, the mechanism of the impact of exosome-derived ncRNAs on tumor angiogenesis is analyzed from various angles. In addition, we focus on the regulatory role of exosome-derived ncRNAs in angiogenesis in different types of cancer. Furthermore, we emphasize the potential role of exosome-derived ncRNAs as biomarkers in cancer diagnosis and prognosis and therapeutic targets in the treatment of tumors.
Collapse
Affiliation(s)
- Kangkang Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bingbing Qiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
12
|
Zhang F, Guo J, Zhang Z, Duan M, Wang G, Qian Y, Zhao H, Yang Z, Jiang X. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 2022; 29:14. [PMID: 35189894 PMCID: PMC8862579 DOI: 10.1186/s12929-022-00798-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
All cells, including prokaryotes and eukaryotes, could release extracellular vesicles (EVs). EVs contain many cellular components, including RNA, and surface proteins, and are essential for maintaining normal intercellular communication and homeostasis of the internal environment. EVs released from different tissues and cells exhibit excellent properties and functions (e.g., targeting specificity, regulatory ability, physical durability, and immunogenicity), rendering them a potential new option for drug delivery and precision therapy. EVs have been demonstrated to transport antitumor drugs for tumor therapy; additionally, EVs' contents and surface substance can be altered to improve their therapeutic efficacy in the clinic by boosting targeting potential and drug delivery effectiveness. EVs can regulate immune system function by affecting the tumor microenvironment, thereby inhibiting tumor progression. Co-delivery systems for EVs can be utilized to further improve the drug delivery efficiency of EVs, including hydrogels and liposomes. In this review, we discuss the isolation technologies of EVs, as well as engineering approaches to their modification. Moreover, we evaluate the therapeutic potential of EVs in tumors, including engineered extracellular vesicles and EVs' co-delivery systems. Technologies such as microfluidics can improve EVs isolation efficiency. Engineering technologies can improve EVs drug loading efficiency and tumor targeting. EVs-based drug co-delivery systems are being developed, such as those with liposomes and hydrogels.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenghou Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqi Duan
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiping Qian
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Qian W, Li G. Extracellular Vesicles from Esophageal Squamous Cell Carcinoma Promote Angiogenesis and Tumor Growth. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Angiogenesis is a prerequisite for tumor development and metastasis. Emerging evidence shows that tumor-derived extracellular vesicles (EVs) are an important component of tumor microenvironment, which participate in the communication between normal cells and tumor cells. In this study,
we aimed to investigate the role of EVs derived from esophageal squamous cell carcinoma (ESCC) on tumor angiogenesis. We found that ESCC cell-derived EVs promoted the proliferation, migration, and tubule formation of human umbilical vein endothelial cells in vitro, and enhanced angiogenesis
and tumor growth in vivo. Our results suggest that ESCC cell-derived EVs could promote angio-genesis and tumor growth, which also indicated the application of EVs as a valuable therapeutic strategy of ESCC.
Collapse
Affiliation(s)
- Wenxiu Qian
- Department of Pediatrics, Jintan Hospital, Jiangsu University, Jintan, Changzhou, Jiangsu 213200, P. R. China
| | - Guomin Li
- Department of Critical Care Medicine, Jintan Hospital, Jiangsu University, Jintan, Changzhou, Jiangsu 213200, P. R. China
| |
Collapse
|
14
|
Zhu C, Jiang X, Xiao H, Guan J. Tumor-derived extracellular vesicles inhibit HGF/c-Met and EGF/EGFR pathways to accelerate the radiosensitivity of nasopharyngeal carcinoma cells via microRNA-142-5p delivery. Cell Death Dis 2022; 8:17. [PMID: 35013115 PMCID: PMC8748649 DOI: 10.1038/s41420-021-00794-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023]
Abstract
Radioresistance prevails as one of the largest obstacles in the clinical treatment of nasopharyngeal carcinoma (NPC). Meanwhile, tumor-derived extracellular vesicles (TEVs) possess the ability to manipulate radioresistance in NPC. However, its mechanism remains to be further explored. Therefore, the current study set out to explore the mechanism of microRNA (miR)-142-5p delivered by TEVs in regard to the radiosensitivity of NPC. Firstly, peripheral blood samples were collected from patients with radioresistance and radiosensitivity, followed by RT-qPCR detection of miR-142-5p expression. A dual-luciferase reporter assay was carried out to elucidate the targeting relationship of miR-142-5p with HGF and EGF. In addition, radiotherapy-resistant NPC cell models were established by screening NPC cells with gradient increasing radiation exposure, and co-incubated with EVs isolated from miR-142-5p mimic-transfected NPC cells, followed by overexpression of HGF and EGF. Moreover, cell viability was detected by means of MTS, cell proliferation with a colony formation assay, cell apoptosis with flow cytometry, and expression patterns of related genes with the help of Western blot analysis. NPC xenotransplantation models in nude mice were also established by subcutaneous injection of 5-8FR cells to determine apoptosis, tumorigenicity, and radiosensitivity in nude mice. It was found that miR-142-5p was poorly expressed in peripheral blood from NPC patients with radioresistance. Mechanistic experimentation illustrated that miR-142-5p inversely targeted HGF and EGF to inactivate the HGF/c-Met and EGF/EGFR pathways, respectively. NPC cell apoptosis was observed to be augmented, while their radioresistance and proliferation were restricted by EVs-miR-142-5p or HGF silencing, or EGF silencing. Furthermore, EVs-miR-142-5p inhibited growth and radioresistance and accelerated the apoptosis of radiotherapy-resistant NPC cells in nude mice by inhibiting the HGF/c-Met and EGF/EGFR pathways. Collectively, our findings indicated that TEVs might inhibit the HGF/c-Met and EGF/EGFR pathways by delivering miR-142-5p into radiotherapy-resistant NPC cells to enhance radiosensitivity in NPC.
Collapse
Affiliation(s)
- Changyu Zhu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China.,Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, P. R. China
| | - Xiaolei Jiang
- Department of Pharmacy, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, P. R. China
| | - Hua Xiao
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, P. R. China
| | - Jianmei Guan
- Central Sterile Supply Department, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, P. R. China.
| |
Collapse
|
15
|
Circulating exosomal miRNAs and cancer early diagnosis. Clin Transl Oncol 2021; 24:393-406. [PMID: 34524618 DOI: 10.1007/s12094-021-02706-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Microribonucleic acids (miRNAs) are small non-coding ribonucleic acids (ncRNAs), which can affect recognition of homologous sequences and interfere with transcription. It plays key roles in the initiation, development, resistance, metastasis or recurrence of cancers. Identifying circulatory indicators will positively improve the prognosis and quality of life of patients with early cancer. Previous studies have shown that miRNA is highly involved in cancer. In addition, miRNA derived from cancers can be encapsulated as exosomes and further extracted into circulatory systems to realize malignant functions. It indicates that circulating exosome-derived miRNAs have the potential to replace conventional biomarkers as cancer derived exosomes carrying miRNAs can be identified by specific markers and might be more stable and accurate for early diagnosis.
Collapse
|
16
|
Qi R, Zhao Y, Guo Q, Mi X, Cheng M, Hou W, Zheng H, Hua B. Exosomes in the lung cancer microenvironment: biological functions and potential use as clinical biomarkers. Cancer Cell Int 2021; 21:333. [PMID: 34193120 PMCID: PMC8247080 DOI: 10.1186/s12935-021-01990-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide. however, emerging immunotherapy and targeted therapies continue to show limited efficacy. In the search for new targets for lung cancer treatment, exosomes have become a major focus of research. Exosomes play an important role in the tumour microenvironment (TME) of lung cancer and affect invasion, metastasis, and treatment responses. This review describes our current understanding of the release of exosomes derived from different cells in the TME, the effects of exosomes on T/Tregs, myeloid-derived suppressor cells, tumour-associated macrophages, dendritic cells, and natural killer cells, and the role of exosomes in the endothelial–mesenchymal transition, angiogenesis, and cancer-associated fibroblasts. In particular, this review focuses on the potential clinical applications of exosomes in the lung cancer microenvironment and their prognostic and diagnostic value.
Collapse
Affiliation(s)
- Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Yuwei Zhao
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Xue Mi
- Shaanxi University of Chinese Medicine, Qindu District, Xianyang, Shaanxi, China
| | - Mengqi Cheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China.
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China.
| |
Collapse
|
17
|
The Sex-Related Interplay between TME and Cancer: On the Critical Role of Estrogen, MicroRNAs and Autophagy. Cancers (Basel) 2021; 13:cancers13133287. [PMID: 34209162 PMCID: PMC8267629 DOI: 10.3390/cancers13133287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
The interplay between cancer cells and the tumor microenvironment (TME) has a fundamental role in tumor progression and response to therapy. The plethora of components constituting the TME, such as stroma, fibroblasts, endothelial and immune cells, as well as macromolecules, e.g., hormones and cytokines, and epigenetic factors, such as microRNAs, can modulate the survival or death of cancer cells. Actually, the TME can stimulate the genetically regulated programs that the cell puts in place under stress: apoptosis or, of interest here, autophagy. However, the implication of autophagy in tumor growth appears still undefined. Autophagy mainly represents a cyto-protective mechanism that allows cell survival but, in certain circumstances, also leads to the blocking of cell cycle progression, possibly leading to cell death. Since significant sex/gender differences in the incidence, progression and response to cancer therapy have been widely described in the literature, in this review, we analyzed the roles played by key components of the TME, e.g., estrogen and microRNAs, on autophagy regulation from a sex/gender-based perspective. We focused our attention on four paradigmatic and different forms of cancers-colon cancer, melanoma, lymphoma, and lung cancer-concluding that sex-specific differences may exert a significant impact on TME/cancer interaction and, thus, tumor growth.
Collapse
|
18
|
Puglisi R, Bellenghi M, Pontecorvi G, Pallante G, Carè A, Mattia G. Biomarkers for Diagnosis, Prognosis and Response to Immunotherapy in Melanoma. Cancers (Basel) 2021; 13:2875. [PMID: 34207514 PMCID: PMC8228007 DOI: 10.3390/cancers13122875] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cutaneous Melanoma classification is constantly looking for specific and sensitive biomarkers capable of having a positive effect on diagnosis, prognosis and risk assessment, eventually affecting clinical outcome. Classical morphological, immunohistochemical and the well-known BRAF and NRAS genetic biomarkers do not allow the correct categorization of patients, being melanoma conditioned by high genetic heterogeneity. At the same time, classic prognostic methods are unsatisfactory. Therefore, new advances in omics and high-throughput analytical techniques have enabled the identification of numerous possible biomarkers, but their potentiality needs to be validated and standardized in prospective studies. Melanoma is considered an immunogenic tumor, being the first form of cancer to take advantage of the clinical use of the immune-checkpoint blockers. However, as immunotherapy is effective only in a limited number of patients, biomarkers associated with different responses are essential to select the more promising therapeutic approach and maximize clinical benefits. In this review, we summarize the most utilized biomarkers for Cutaneous Melanoma diagnosis, focusing on new prognostic and predictive biomarkers mainly associated with immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Alessandra Carè
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.P.); (M.B.); (G.P.); (G.P.); (G.M.)
| | | |
Collapse
|
19
|
Moyal L, Arkin C, Gorovitz-Haris B, Querfeld C, Rosen S, Knaneh J, Amitay-Laish I, Prag-Naveh H, Jacob-Hirsch J, Hodak E. Mycosis fungoides-derived exosomes promote cell motility and are enriched with microRNA-155 and microRNA-1246, and their plasma-cell-free expression may serve as a potential biomarker for disease burden. Br J Dermatol 2021; 185:999-1012. [PMID: 34053079 DOI: 10.1111/bjd.20519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Literature regarding exosomes as mediators in intercellular communication to promote progression in mycosis fungoides (MF) is lacking. OBJECTIVES To characterize MF-derived exosomes and their involvement in the disease. METHODS Exosomes were isolated by ultracentrifugation from cutaneous T-cell lymphoma (CTCL) cell lines, and from plasma of patients with MF and controls (healthy individuals). Exosomes were confirmed by electron microscopy, NanoSight and CD81 staining. Cell-line exosomes were profiled for microRNA array. Exosomal microRNA (exomiRNA) expression and uptake, and plasma-cell-free microRNA (cfmiRNA) were analysed by reverse-transcriptase quantitative polymerase chain reaction. Exosome uptake was monitored by fluorescent labelling and CD81 immunostaining. Migration was analysed by transwell migration assay. RESULTS MyLa- and MJ-derived exosomes had a distinctive microRNA signature with abundant microRNA (miR)-155 and miR-1246. Both microRNAs were delivered into target cells, but only exomiR-155 was tested, demonstrating a migratory effect on target cells. Plasma levels of cfmiR-1246 were significantly highest in combined plaque/tumour MF, followed by patch MF, and were lowest in controls (plaque/tumour > patch > healthy), while cfmiR-155 was upregulated only in plaque/tumour MF vs. controls. Specifically, exomiR-1246 (and not exomiR-155) was higher in plasma of plaque/tumour MF than in healthy controls. Plasma exosomes from MF but not from controls increased cell migration. CONCLUSIONS Our findings show that MF-derived exosomes promote cell motility and are enriched with miR-155, a well-known microRNA in MF, and miR-1246, not previously reported in MF. Based on their plasma expression we suggest that they may serve as potential biomarkers for tumour burden.
Collapse
Affiliation(s)
- L Moyal
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva, 4941492, Israel.,Division of Dermatology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - C Arkin
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva, 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - B Gorovitz-Haris
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva, 4941492, Israel.,Division of Dermatology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - C Querfeld
- Department of Pathology & Division of Dermatology, City of Hope, and Beckman Research Institute, Duarte, CA, USA
| | - S Rosen
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.,Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - J Knaneh
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva, 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - I Amitay-Laish
- Division of Dermatology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - H Prag-Naveh
- Division of Dermatology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - J Jacob-Hirsch
- Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - E Hodak
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Petach Tikva, 4941492, Israel.,Division of Dermatology, Rabin Medical Center - Beilinson Hospital, Petach Tikva, 4941492, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
20
|
De Sanctis P, Filardo G, Abruzzo PM, Astolfi A, Bolotta A, Indio V, Di Martino A, Hofer C, Kern H, Löfler S, Marcacci M, Marini M, Zampieri S, Zucchini C. Non-Coding RNAs in the Transcriptional Network That Differentiates Skeletal Muscles of Sedentary from Long-Term Endurance- and Resistance-Trained Elderly. Int J Mol Sci 2021; 22:1539. [PMID: 33546468 PMCID: PMC7913629 DOI: 10.3390/ijms22041539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
In a previous study, the whole transcriptome of the vastus lateralis muscle from sedentary elderly and from age-matched athletes with an exceptional record of high-intensity, life-long exercise training was compared-the two groups representing the two extremes on a physical activity scale. Exercise training enabled the skeletal muscle to counteract age-related sarcopenia by inducing a wide range of adaptations, sustained by the expression of protein-coding genes involved in energy handling, proteostasis, cytoskeletal organization, inflammation control, and cellular senescence. Building on the previous study, we examined here the network of non-coding RNAs participating in the orchestration of gene expression and identified differentially expressed micro- and long-non-coding RNAs and some of their possible targets and roles. Unsupervised hierarchical clustering analyses of all non-coding RNAs were able to discriminate between sedentary and trained individuals, regardless of the exercise typology. Validated targets of differentially expressed miRNA were grouped by KEGG analysis, which pointed to functional areas involved in cell cycle, cytoskeletal control, longevity, and many signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), which had been shown to be pivotal in the modulation of the effects of high-intensity, life-long exercise training. The analysis of differentially expressed long-non-coding RNAs identified transcriptional networks, involving lncRNAs, miRNAs and mRNAs, affecting processes in line with the beneficial role of exercise training.
Collapse
Affiliation(s)
- Paola De Sanctis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Annalisa Astolfi
- Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; (A.A.); (V.I.)
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Bolotta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Valentina Indio
- Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; (A.A.); (V.I.)
| | - Alessandro Di Martino
- Second Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Christian Hofer
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation Research, 3100 St. Pölten, Austria; (C.H.); (H.K.); (S.L.)
| | - Maurilio Marcacci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy;
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Sandra Zampieri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35122 Padua, Italy;
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; (P.D.S.); (M.M.); (C.Z.)
| |
Collapse
|
21
|
|
22
|
Sha L, Ma D, Chen C. Exosome-mediated Hic-5 regulates proliferation and apoptosis of osteosarcoma via Wnt/β-catenin signal pathway. Aging (Albany NY) 2020; 12:23598-23608. [PMID: 33310972 PMCID: PMC7762460 DOI: 10.18632/aging.103546] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/04/2020] [Indexed: 04/13/2023]
Abstract
The expression of Hic-5 was detected in osteosarcoma patients and osteosarcoma cell lines by RT-PCR. Then RFP-sh-Hic-5 was transfected into osteosarcoma cell lines. The effect of Hic-5 on cell viability, proliferation and apoptosis were assessed by MTT, EdU kit and Flow cytometry. The exosomes were isolated from MG-63 cell supernatant by an Exosome Isolation Kit. The exosome-Hic-5 was confirmed by transmission electron microscope, particle size detection and RT-PCR. Next, exosome-Hic-5 treated cells were explored the cell viability, proliferation and apoptosis. Further, Co-IP assay was employed for identifying the relationship between Hic-5 and smad4. TCF/LEF and the protein level of components of wnt/β-catenin signals were detected by TOP luciferase assay and western blot. Hic-5 was upregulated in osteosarcoma tissues and cell. Forced decreased expression Hic-5 inhibited the proliferation of osteosarcoma cell lines, and induced apoptosis of MG-63 and HOS. In vivo, silencing Hic-5 remitted the tumor progression. Further, we isolated the exosomes from MG-63 supernatant, exosomes concluding Hic-5 would regulated the proliferation and apoptosis level of MG-63 and HOS cells. Further, Hic-5 interacted with smad4 and regulated Wnt/β-catenin signal by decreasing TCF/LEF activity. Silencing Hic-5 inhibited the proliferation and induced apoptosis of osteosarcoma cell via inactivating Wnt/β-catenin signal by exosome pathway.
Collapse
Affiliation(s)
- Liansheng Sha
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao 276826, Shandong Province, China
| | - Deying Ma
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao 276826, Shandong Province, China
| | - Cuili Chen
- Department of Orthopedics, People’s Hospital of Rizhao, Rizhao 276826, Shandong Province, China
| |
Collapse
|
23
|
Exosomes and Extracellular Vesicles as Emerging Theranostic Platforms in Cancer Research. Cells 2020; 9:cells9122569. [PMID: 33271820 PMCID: PMC7761021 DOI: 10.3390/cells9122569] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are endosome-derived nanovesicles produced by healthy as well as diseased cells. Their proteic, lipidic and nucleic acid composition is related to the cell of origin, and by vehiculating bioactive molecules they are involved in cell-to-cell signaling, both in healthy and pathologic conditions. Being nano-sized, non-toxic, biocompatible, scarcely immunogenic, and possessing targeting ability and organotropism, exosomes have been proposed as nanocarriers for their potential application in diagnosis and therapy. Among the different techniques exploited for exosome isolation, the sequential ultracentrifugation/ultrafiltration method seems to be the gold standard; alternatively, commercially available kits for exosome selective precipitation from cell culture media are frequently employed. To load a drug or a detectable agent into exosomes, endogenous or exogenous loading approaches have been developed, while surface engineering procedures, such as click chemistry, hydrophobic insertion and exosome display technology, allow for obtaining actively targeted exosomes. This review reports on diagnostic or theranostic platforms based on exosomes or exosome-mimetic vesicles, highlighting the diverse preparation, loading and surface modification methods applied, and the results achieved so far.
Collapse
|
24
|
Li S, Wang X. The potential roles of exosomal noncoding RNAs in osteosarcoma. J Cell Physiol 2020; 236:3354-3365. [PMID: 33044018 DOI: 10.1002/jcp.30101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
Clinically, it is difficult to efficaciously screen and diagnose osteosarcoma (OS) in advance due to the low sensitivity and poor specificity of the existing tumor markers. Exosomes (Exos) are nanoscale vesicles containing RNAs, lipids, and proteins with a diameter of 30-100 nm. They are multivesicular bodies formed during the invagination of lysosomal particles in cells and released extracellularly after fusing with cell membranes. Besides, Exos are important carriers of cell-to-cell communication signals and genetic materials in the tumor microenvironment. During tumorigenesis, the tumor cells interplay with immune cells, endothelial cells, and related fibroblasts through Exos and boost cancer development. After altering the surrounding microenvironment, the Exos drive tumor cells to proliferate, speed up angiogenesis, and boost cancers to develop along with body fluid transportation. Currently, Exos are becoming novel noninvasive tumor diagnostic markers with high sensitivity, exerting pivotal impacts in fundamental research and clinical applications. Here, we review the existing literature on the roles of exosomal noncoding RNAs in OS progression and their potential clinical applications as novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China.,School of Fundamental Sciences, Center of 3D Printing and Organ Manufacturing, China Medical University (CMU), Shenyang, China
| | - Xiaohong Wang
- School of Fundamental Sciences, Center of 3D Printing and Organ Manufacturing, China Medical University (CMU), Shenyang, China.,Department of Mechanical Engineering, Center of Organ Manufacturing, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Exosome-mediated miR-9-5p promotes proliferation and migration of renal cancer cells both in vitro and in vivo by targeting SOCS4. Biochem Biophys Res Commun 2020; 529:1216-1224. [PMID: 32819588 DOI: 10.1016/j.bbrc.2020.06.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
Exosomes secreted by cancer cells play important roles in tumor progression by interacting with cell receptors. Renal cancer derived exosomes contain miRNAs which are associated with cell proliferation and invasion. Micro RNA 9-5 (miR-9-5) is highly expressed in the serum of renal cancer patients with advanced (tumor size - node - metastasis) TNM stage and Fuhrman grade. miR-9-5p is extensively expressed in exosomes derived from renal cancer cells. Overexpression of miR-9-5p promotes proliferation and invasion of A-704 (a cancer cell line of human kidney) cells via targeting and deregulating SOCS4 mRNA. Inhibition of the Janus kinase (JAK)/signaling transducer and activator of transcription (STAT) pathway by SOCS4 will be reduced, which leads to phosphorylation of STAT3 and JAK. Activated cytokine signaling promotes cell proliferation and invasion, and inhibits apoptosis. Moreover, overexpression of SOCS4 reduces miR-9-5p levels and plays an opposite role in cell. To conclude, exosomal miR-9-5p plays important roles in renal cancer both in vivo and in vitro, indicating it may be used as biomarker for diagnosis and for monitoring the efficacy if therapy.
Collapse
|
26
|
Bellenghi M, Puglisi R, Pontecorvi G, De Feo A, Carè A, Mattia G. Sex and Gender Disparities in Melanoma. Cancers (Basel) 2020; 12:E1819. [PMID: 32645881 PMCID: PMC7408637 DOI: 10.3390/cancers12071819] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Worldwide, the total incidence of cutaneous melanoma is higher in men than in women, with some differences related to ethnicity and age and, above all, sex and gender. Differences exist in respect to the anatomic localization of melanoma, in that it is more frequent on the trunk in men and on the lower limbs in women. A debated issue is if-and to what extent-melanoma development can be attributed to gender-specific behaviors or to biologically intrinsic differences. In the search for factors responsible for the divergences, a pivotal role of sex hormones has been observed, although conflicting results indicate the involvement of other mechanisms. The presence on the X chromosome of numerous miRNAs and coding genes playing immunological roles represents another important factor, whose relevance can be even increased by the incomplete X chromosome random inactivation. Considering the known advantages of the female immune system, a different cancer immune surveillance efficacy was suggested to explain some sex disparities. Indeed, the complexity of this picture emerged when the recently developed immunotherapies unexpectedly showed better improvements in men than in women. Altogether, these data support the necessity of further studies, which consider enrolling a balanced number of men and women in clinical trials to better understand the differences and obtain actual gender-equitable healthcare.
Collapse
Affiliation(s)
- Maria Bellenghi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Giada Pontecorvi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Carè
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (R.P.); (G.P.); (G.M.)
| |
Collapse
|
27
|
Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, Tian Y, Rao S, Oyang L, Liang J, Lin J, Su M, Shi Y, Cao D, Zhou Y, Liao Q. Exosomal miRNAs in tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:67. [PMID: 32299469 PMCID: PMC7164281 DOI: 10.1186/s13046-020-01570-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Tumor microenvironment (TME) is the internal environment in which tumor cells survive, consisting of tumor cells, fibroblasts, endothelial cells, and immune cells, as well as non-cellular components, such as exosomes and cytokines. Exosomes are tiny extracellular vesicles (40-160nm) containing active substances, such as proteins, lipids and nucleic acids. Exosomes carry biologically active miRNAs to shuttle between tumor cells and TME, thereby affecting tumor development. Tumor-derived exosomal miRNAs induce matrix reprogramming in TME, creating a microenvironment that is conducive to tumor growth, metastasis, immune escape and chemotherapy resistance. In this review, we updated the role of exosomal miRNAs in the process of TME reshaping.
Collapse
Affiliation(s)
- Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794,, USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|