1
|
Grangeiro YA, Santos ALE, Barbosa FEV, Roma RR, Souza ROS, Silva CGL, Teixeira CS. A Review of the Leishmanicidal Properties of Lectins. Curr Protein Pept Sci 2024; 25:443-453. [PMID: 38284715 DOI: 10.2174/0113892037275751231221053730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/14/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024]
Abstract
Lectins are proteins widely distributed among plants, animals and microorganisms that have the ability to recognize and interact with specific carbohydrates. They have varied biological activities, such as the inhibition of the progression of infections caused by fungi, bacteria, viruses and protozoa, which is related to the interaction of these proteins with the carbohydrates present in the cell walls of these microorganisms. Leishmaniasis are a group of endemic infectious diseases caused by protozoa of the genus Leishmania. In vitro and in vivo tests with promastigotes and amastigotes of Leishmania demonstrated that lectins have the ability to interact with glycoconjugates present on the cell surface of the parasite, it prevents their development through various mechanisms of action, such as the production of ROS and alteration of membrane integrity, and can also interact with defense cells present in the human body, thus showing that these molecules can be considered alternative pharmacological targets for the treatment of leishmaniasis. The objective of the present work is to carry out a bibliographic review on lectins with leishmanicidal activity, emphasizing the advances and perspectives of research in this theme. Through the analysis of the selected studies, we were able to conclude that lectins have great potential for inhibiting the development of leishmaniasis. However, there are still few studies on this subject.
Collapse
Affiliation(s)
- Yasmim A Grangeiro
- Departamento de Bioquímica, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ana L E Santos
- Faculdade de Medicina, Universidade Federal do Cariri, Barbalha, CE, Brazil
| | - Flávia E V Barbosa
- Faculdade de Medicina, Universidade Federal do Cariri, Barbalha, CE, Brazil
| | - Renato R Roma
- Departamento de Bioquímica, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Racquel O S Souza
- Faculdade de Medicina, Universidade Federal do Cariri, Barbalha, CE, Brazil
| | - Cláudio G L Silva
- Faculdade de Medicina, Universidade Federal do Cariri, Barbalha, CE, Brazil
| | - Claudener S Teixeira
- Centro de Ciências Agrárias e da biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil
| |
Collapse
|
2
|
Dang Y, Nie L, Chen J. Molecular and functional characterisation of a mannose-binding lectin-like gene from Japanese sea bass (Lateolabrax japonicus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103558. [PMID: 31751630 DOI: 10.1016/j.dci.2019.103558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Mannose-binding lectin (MBL) plays an important role in host immune responses against pathogens. LjMBL-like-1 was identified from Japanese sea bass (Lateolabrax japonicas), which has selectivity for galactose. Herein, this lectin might be better designated as galactose-binding lectin (LjGalBL-1). LjGalBL-1 transcripts were detected in all tested tissues, with highest expression in liver. Upon Vibrio harveyi infection, LjGalBL-1 mRNA expression was increased in major immune-related tissues, and protein levels in serum were also upregulated. Recombinant LjGalBL-1 (rLjGalBL-1) bound to monosaccharides and polysaccharides, and both rLjGalBL-1 and native LjGalBL-1 (nLjGalBL-1) agglutinated three Gram-positive bacteria (Staphylococcus aureus, Streptococcus iniae and Micrococcus luteus) and four Gram-negative bacteria (Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum and V. harveyi) in a Ca2+-dependent manner in vitro. Moreover, rLjGalBL-1 increased the survival rate of V. harveyi-infected fish and decreased bacterial load in liver, spleen, kidney and blood. Thus, LjGalBL-1 protects L. japonicas against V. harveyi infection.
Collapse
Affiliation(s)
- Yunfei Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
3
|
Clark KF. Characterization and functional classification of American lobster (Homarus americanus) immune factor transcripts. FISH & SHELLFISH IMMUNOLOGY 2014; 41:12-26. [PMID: 24981290 DOI: 10.1016/j.fsi.2014.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
The American lobster (Homarus americanus) is the most important commercially exploited marine species in Canada. Very little is known about the H. americanus molecular humoral immune response or how to determine if a seemingly healthy lobster is infected with a pathogen. The goal of this work is to characterize several important H. americanus immune genes as well as highlight and classify hundreds of others into functional immune groups. The protein sequence of H. americanus acute phase serum amyloid protein A (SAA) was found to be similar to that of vertebrate SAA, and is likely a good clinical marker for immune activation in lobsters and some crustaceans. Additionally, only one gene, Trypsin 1b, was found to be differentially regulated during bacterial, microparasitic and viral challenges in lobster and is likely critical for the activation of the H. americanus immune response. Bioinformatic analysis was used to functionally annotate, 263 H. americanus immune genes and identify the few shared patterns of differential gene expression in lobsters in response to bacterial, parasitic and viral challenge. Many of the described immune genes are biomarker candidates which could be used as clinical indicators for lobster health and disease. Biomarkers can facilitate early detection of pathogens, or anthropomorphic stressors, so that mitigation strategies can be developed in order to prevent the devastating economic losses that have occurred in Southern New England, USA. This work is contributes to further our understanding of how the lobster immune system works and how it can be used to maintain the health and sustainability of the overall American lobster fishery.
Collapse
Affiliation(s)
- K Fraser Clark
- AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada.
| |
Collapse
|
4
|
Clark KF, Greenwood SJ, Acorn AR, Byrne PJ. Molecular immune response of the American lobster (Homarus americanus) to the White Spot Syndrome Virus. J Invertebr Pathol 2013; 114:298-308. [PMID: 24045127 DOI: 10.1016/j.jip.2013.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/09/2023]
Abstract
The adult American lobster (Homarus americanus) is susceptible to few naturally occurring pathogens, and no viral pathogen is known to exist. Despite this, relatively little is known about the H. americanus immune system and nothing is known about its potential viral immune response. Hundreds of rural communities in Atlantic Canada rely on the lobster fishery for their economic sustainability and could be devastated by large-scale pathogen-mediated mortality events. The White Spot Syndrome Virus is the most economically devastating viral pathogen to global shrimp aquaculture production and has been proposed to be capable of infecting all decapod crustaceans including the European Lobster. An in vivo WSSV injection challenge was conducted in H. americanus and WSSV was found to be capable of infecting and replicating within lobsters held at 20°C. The in vivo WSSV challenge also generated the first viral disease model of H. americanus and allowed for the high-throughput examination of transcriptomic changes that occur during viral infection. Microarray analysis found 136 differentially expressed genes and the expression of a subset of these genes was verified using RT-qPCR. Anti-lipopolysaccharide isoforms and acute phase serum amyloid protein A expression did not change during WSSV infection, contrary to previous findings during bacterial and parasitic infection of H. americanus. This, along with the differential gene expression of thioredoxin and trypsin isoforms, provides compelling evidence that H. americanus is capable of mounting an immune response specific to infection by different pathogen classes.
Collapse
Affiliation(s)
- K Fraser Clark
- AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada; Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island C1A 4P3, Canada.
| | | | | | | |
Collapse
|
5
|
Clark KF, Acorn AR, Greenwood SJ. A transcriptomic analysis of American lobster (Homarus americanus) immune response during infection with the bumper car parasite Anophryoides haemophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:112-122. [PMID: 23470455 DOI: 10.1016/j.dci.2013.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/18/2013] [Accepted: 02/25/2013] [Indexed: 06/01/2023]
Abstract
Anophryoides haemophila is an important protistan parasite of American lobster, Homarus americanus, as it has been found to infect lobsters in the wild as well as causing major losses of lobsters maintained in commercial holding facilities. Expression of over 14,500 H. americanus hepatopancreatic genes were monitored during an A. haemophila infection challenge in order to elucidate molecular mechanisms involved in the lobster immune response. One hundred and forty-five genes were found to be differentially expressed during infection. For many genes, this study is the first to link their expression to an immune response to a known lobster pathogen. Several of the genes have previously been linked to crustacean or invertebrate immune response including: several anti-lipopolysaccharide factor isoforms (ALFHa), acute phase serum amyloid protein A (SAA), a serine protease inhibitor, a toll-like receptor, several haemocyanin subunits, phagocyte signaling-impaired protein, vitelline membrane outer layer protein-1, trypsin, and a C-type lectin receptor. Microarray results were verified using RT-qPCR and agreement was good between the two methods. The expression of six ALFHa isoforms was monitored via microarray where ALFHa-1, ALFHa-2, ALFHa-4 and ALFHa-6 were differentially expressed while ALFHa-3 and ALFHa7 were not. RT-qPCR analysis confirmed that ALFHa-1, ALFHA-2 and ALFHa-4 expression increased during infection with a peak at 5-7weeks for ALFHa-1 and 10weeks for ALFHa-2 and ALFHa-4. This suggests that different ALFHa isoforms are temporally expressed during A. haemophila infection. Importantly, these results provide evidence that different ALFHa isoforms have more significant roles in responding to A. haemophila infection. Significant increases in SAA gene expression were also found, corroborating previous findings of increased SAA expression during Aerococcus viridans infections; highlighting the importance of SAA as a marker of H. americanus immune activation and potential indicator of H. americanus health.
Collapse
Affiliation(s)
- K Fraser Clark
- AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3.
| | | | | |
Collapse
|
6
|
Clark KF, Acorn AR, Greenwood SJ. Differential expression of American lobster (Homarus americanus) immune related genes during infection of Aerococcus viridans var. homari, the causative agent of Gaffkemia. J Invertebr Pathol 2012; 112:192-202. [PMID: 23229077 DOI: 10.1016/j.jip.2012.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 11/18/2022]
Abstract
This is the first transcriptomic study focusing on immunity in the commercially valuable American lobster (Homarus americanus). We have conducted an in vivo infection trial using the Gram-positive bacterium Aerococcus viridans var. homari to determine how H. americanus responds to this naturally occurring lethal-pathogen. A novel H. americanus microarray was used to measure the transcriptomic changes occurring in over 14,000 genes in the lobster hepatopancreas. Hundreds of new immune genes and isoforms were identified and measured for the first time in this species, and our findings highlight 148 genes of interest involved in H. americanus pathogen response. We verified our microarray results using RT-qPCR on three anti-lipopolysaccharide (ALFHa-1, ALFHa-2, ALFHa-4), a thioredoxin, acute phase serum amyloid protein A, hexokinase and two trypsin genes. RT-qPCR and microarray findings show close agreement and highlight the significant increase in gene expression in many lobster immune genes during A. viridans infection. Differential expression of the ALFHa isoforms may indicate that the H. americanus immune response can be tailored to the class of pathogen causing disease.
Collapse
Affiliation(s)
- K Fraser Clark
- AVC Lobster Science Centre, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3.
| | | | | |
Collapse
|
7
|
Shim E, Shim J, Klochkova TA, Han JW, Kim GH. PURIFICATION OF A SEX-SPECIFIC LECTIN INVOLVED IN GAMETE BINDING OF AGLAOTHAMNION CALLOPHYLLIDICOLA (RHODOPHYTA)(1). JOURNAL OF PHYCOLOGY 2012; 48:916-24. [PMID: 27009002 DOI: 10.1111/j.1529-8817.2012.01155.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Egg and sperm binding and correct recognition is the first stage for successful fertilization. In red algae, spermatial attachment to female trichogynes is mediated by a specific binding between the lectin(s) distributed on the surface of trichogyne and the complementary carbohydrates on the spermatial surface. A female-specific lectin was isolated from Aglaothamnion callophyllidicola by agarose-bound fetuin affinity chromatography. Two proteins, 50 and 14 kDa, eluted from the fetuin column were separated using a native-polyacrylamide gel electrophoresis method and subjected to a gamete binding assay. The 50 kDa protein, which blocked spermatial binding to female trichogynes, was used for further analysis. Internal amino acid sequence of the 50 kDa protein was analyzed using matrix-assisted laser desorption/ionization-mass spectrometry and degenerated primers were designed based on the information. A full-length cDNA encoding the lectin was obtained using rapid amplification of cDNA ends polymerase chain reaction (PCR). The cDNA was 1552 bp in length and coded for a protein of 450 amino acids with a deduced molecular mass of 50.7 kDa, which agreed well with the protein data. Real-time PCR analysis showed that this protein was up-regulated about 10-fold in female thalli. As the protein was novel and showed no significant homology to any known proteins, it was designated Rhodobindin.
Collapse
Affiliation(s)
- Eunyoung Shim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Junbo Shim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Tatyana A Klochkova
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Jong Won Han
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, Chungnam 314-701, Korea
| |
Collapse
|