1
|
Pridans C, Davis GM, Sauter KA, Lisowski ZM, Corripio-Miyar Y, Raper A, Lefevre L, Young R, McCulloch ME, Lillico S, Milne E, Whitelaw B, Hume DA. A Csf1r-EGFP Transgene Provides a Novel Marker for Monocyte Subsets in Sheep. THE JOURNAL OF IMMUNOLOGY 2016; 197:2297-305. [PMID: 27521343 PMCID: PMC5009875 DOI: 10.4049/jimmunol.1502336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Expression of Csf1r in adults is restricted to cells of the macrophage lineage. Transgenic reporters based upon the Csf1r locus require inclusion of the highly conserved Fms-intronic regulatory element for expression. We have created Csf1r-EGFP transgenic sheep via lentiviral transgenesis of a construct containing elements of the mouse Fms-intronic regulatory element and Csf1r promoter. Committed bone marrow macrophage precursors and blood monocytes express EGFP in these animals. Sheep monocytes were divided into three populations, similar to classical, intermediate, and nonclassical monocytes in humans, based upon CD14 and CD16 expression. All expressed EGFP, with increased levels in the nonclassical subset. Because Csf1r expression coincides with the earliest commitment to the macrophage lineage, Csf1r-EGFP bone marrow provides a tool for studying the earliest events in myelopoiesis using the sheep as a model.
Collapse
Affiliation(s)
- Clare Pridans
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Gemma M Davis
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Kristin A Sauter
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Zofia M Lisowski
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | | | - Anna Raper
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Lucas Lefevre
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Rachel Young
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Mary E McCulloch
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Simon Lillico
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Elspeth Milne
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Bruce Whitelaw
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| |
Collapse
|
2
|
Molinos M, Almeida CR, Gonçalves RM, Barbosa MA. Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. Tissue Eng Part A 2015; 21:2216-27. [DOI: 10.1089/ten.tea.2014.0461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Maria Molinos
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Catarina R. Almeida
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Raquel M. Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Mário A. Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Ekman A, Ilves M, Iivanainen A. B lymphopoiesis is characterized by pre-B cell marker gene expression in fetal cattle and declines in adults. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:39-49. [PMID: 22210545 DOI: 10.1016/j.dci.2011.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
Fetal cattle B-cell development proceeds via a pre-B cell stage that is characterized by the expression of surrogate light chain and recombination activation genes. In this paper, we identify a new member of bovine pre-B lymphocyte genes, VPREB2. Using RT-qPCR, we assess the expression of VPREB2 and three other surrogate light chain genes as well as RAG1 and RAG2 in fetal and adult cattle tissues. The absence of VPREB1, IGLL1, RAG1 and RAG2 expression in adult tissues and the lack of B-lymphoid differentiation in adult bone marrow - OP9 stromal cell co-culture, suggest a decline of B lymphopoiesis in adult cattle. The marked differences in the expression profiles of VPREB2 and VPREB3 in comparison to those of VPREB1, IGLL1 and RAGs suggest that the biological roles of VPREB2 and VPREB3 are unrelated to the pre-B cells.
Collapse
Affiliation(s)
- Anna Ekman
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | | | | |
Collapse
|