1
|
Ott JA, Haakenson JK, Kelly AR, Christian C, Criscitiello MF, Smider VV. Evolution of surrogate light chain in tetrapods and the relationship between lengths of CDR H3 and VpreB tails. Front Immunol 2022; 13:1001134. [PMID: 36311706 PMCID: PMC9614664 DOI: 10.3389/fimmu.2022.1001134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
In the mammalian immune system, the surrogate light chain (SLC) shapes the antibody repertoire during B cell development by serving as a checkpoint for production of functional heavy chains (HC). Structural studies indicate that tail regions of VpreB contact and cover the third complementarity-determining region of the HC (CDR H3). However, some species, particularly bovines, have CDR H3 regions that may not be compatible with this HC-SLC interaction model. With immense structural and genetic diversity in antibody repertoires across species, we evaluated the genetic origins and sequence features of surrogate light chain components. We examined tetrapod genomes for evidence of conserved gene synteny to determine the evolutionary origin of VpreB1, VpreB2, and IGLL1, as well as VpreB3 and pre-T cell receptor alpha (PTCRA) genes. We found the genes for the SLC components (VpreB1, VpreB2, and IGLL1) only in eutherian mammals. However, genes for PTCRA occurred in all amniote groups and genes for VpreB3 occurred in all tetrapod groups, and these genes were highly conserved. Additionally, we found evidence of a new VpreB gene in non-mammalian tetrapods that is similar to the VpreB2 gene of eutherian mammals, suggesting VpreB2 may have appeared earlier in tetrapod evolution and may be a precursor to traditional VpreB2 genes in higher vertebrates. Among eutherian mammals, sequence conservation between VpreB1 and VpreB2 was low for all groups except rabbits and rodents, where VpreB2 was nearly identical to VpreB1 and did not share conserved synteny with VpreB2 of other species. VpreB2 of rabbits and rodents likely represents a duplicated variant of VpreB1 and is distinct from the VpreB2 of other mammals. Thus, rabbits and rodents have two variants of VpreB1 (VpreB1-1 and VpreB1-2) but no VpreB2. Sequence analysis of VpreB tail regions indicated differences in sequence content, charge, and length; where repertoire data was available, we observed a significant relationship between VpreB2 tail length and maximum DH length. We posit that SLC components co-evolved with immunoglobulin HC to accommodate the repertoire - particularly CDR H3 length and structure, and perhaps highly unusual HC (like ultralong HC of cattle) may bypass this developmental checkpoint altogether.
Collapse
Affiliation(s)
- Jeannine A. Ott
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jeremy K. Haakenson
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abigail R. Kelly
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Claire Christian
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Vaughn V. Smider
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
2
|
Guan X, Zhao S, Xiang W, Jin H, Chen N, Lei C, Jia Y, Xu L. Genetic Diversity and Selective Signature in Dabieshan Cattle Revealed by Whole-Genome Resequencing. BIOLOGY 2022; 11:biology11091327. [PMID: 36138806 PMCID: PMC9495734 DOI: 10.3390/biology11091327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary To protect the genetic resources of Chinese native cattle breeds, we investigated the genetic structure, genetic diversity and genetic signature from artificial or natural selection by sequencing 32 bovine genomes from the breeding farm of the Dabieshan population. We discovered that the ancestral contributions of Dabieshan originated from Chinese indicine and East Asian taurine on the autosomal genome, which had abundant genomic diversity. Some candidate genes associated with fertility, feed efficiency, fat deposition, immune response, heat resistance and the coat color were identified by a selective sweep. The SNPs data were based on genomics, which could establish a foundation for breed amelioration and support conservation for indigenous cattle breeds. Abstract Dabieshan cattle are a typical breed of southern Chinese cattle that have the characteristics of muscularity, excellent meat quality and tolerance to temperature and humidity. Based on 148 whole-genome data, our analysis disclosed the ancestry components of Dabieshan cattle with Chinese indicine (0.857) and East Asian taurine (0.139). The Dabieshan genome demonstrated a higher genomic diversity compared with the other eight populations, supported by the observed nucleotide diversity, linkage disequilibrium decay and runs of homozygosity. The candidate genes were detected by a selective sweep, which might relate to the fertility (GPX5, GPX6), feed efficiency (SLC2A5), immune response (IGLL1, BOLA-DQA2, BOLA-DQB), heat resistance (DnaJC1, DnaJC13, HSPA4), fat deposition (MLLT10) and the coat color (ASIP). We also identified the “East Asian taurine-like” segments in Dabieshan cattle, which might contribute to meat quality traits. The results revealed by the unique and valuable genomic data can build a foundation for the genetic improvement and conservation of genetic resources for indigenous cattle breeds.
Collapse
Affiliation(s)
- Xiwen Guan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shuanping Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Weixuan Xiang
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Hai Jin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yutang Jia
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Lei Xu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Correspondence: ; Tel.: +86-153-7547-2704
| |
Collapse
|
3
|
Stepanova K, Sinkorova J, Srutkova D, Sinkora M, Sinkora S, Splichal I, Splichalova A, Butler JE, Sinkora M. The order of immunoglobulin light chain κ and λ usage in primary and secondary lymphoid tissues of germ-free and conventional piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104392. [PMID: 35271860 DOI: 10.1016/j.dci.2022.104392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In pigs (Sus scrofa), the initial immunoglobulin rearrangement of the κ light chain is replaced by λ before the heavy chains rearrange, and the light chains may rearrange even later. This study investigates whether these developmental differences are reflected in the usage of IGK and IGL genes. We found large differences between peripheral B cells and those developing in the bone marrow, and between B cells in germ-free piglets and conventional pigs. During early B cell development in the bone marrow, more 3' V and 5' J gene segments for both light chains are used. However, in the peripheral naive repertoire, more 5' IGLV and 3' IGLJ genes are used. A similar shift toward the use of more 5' IGKV and 3' IGKJ genes is observed later after antigen exposure in conventional pigs. The expression profile showed that most λ+ B cells are generated earlier, while κ+ B cells develop from late precursors that already contain the λ rearrangement. The initial λ rearrangement is retained in both λ+ and κ+ B lymphocytes, and multiple λ transcripts can be found in individual cells. The overall pool of the IGLV repertoire is therefore much larger and more diversified than for IGKV. The κ repertoire is further restricted to the preferential use of only two major IGKV genes, reflecting the limitation for only two consecutive rearrangements. Tracing of silenced λ transcripts in κ+ B cells further confirmed the unconventional mechanism of differential rearrangements in pigs. Our results underline the diversity of the immune system among mammals.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - John E Butler
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| |
Collapse
|
4
|
Sinkora M, Stepanova K, Butler JE, Sinkora M, Sinkora S, Sinkorova J. Comparative Aspects of Immunoglobulin Gene Rearrangement Arrays in Different Species. Front Immunol 2022; 13:823145. [PMID: 35222402 PMCID: PMC8873125 DOI: 10.3389/fimmu.2022.823145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Studies in humans and mice indicate the critical role of the surrogate light chain in the selection of the productive immunoglobulin repertoire during B cell development. However, subsequent studies using mutant mice have also demonstrated that alternative pathways are allowed. Our recent investigation has shown that some species, such as pig, physiologically use preferential rearrangement of authentic light chains, and become independent of surrogate light chains. Here we summarize the findings from swine and compare them with results in other species. In both groups, allelic and isotypic exclusions remain intact, so the different processes do not alter the paradigm of B-cell monospecificity. Both groups also retained some other essential processes, such as segregated and sequential rearrangement of heavy and light chain loci, preferential rearrangement of light chain kappa before lambda, and functional κ-deleting element recombination. On the other hand, the respective order of heavy and light chains rearrangement may vary, and rearrangement of the light chain kappa and lambda on different chromosomes may occur independently. Studies have also confirmed that the surrogate light chain is not required for the selection of the productive repertoire of heavy chains and can be substituted by authentic light chains. These findings are important for understanding evolutional approaches, redundancy and efficiency of B-cell generation, dependencies on other regulatory factors, and strategies for constructing therapeutic antibodies in unrelated species. The results may also be important for explaining interspecies differences in the proportional use of light chains and for the understanding of divergences in rearrangement processes. Therefore, the division into two groups may not be definitive and there may be more groups of intermediate species.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
5
|
Sinkora M, Stepanova K, Sinkorova J. Immunoglobulin light chain κ precedes λ rearrangement in swine but a majority of λ + B cells are generated earlier. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103751. [PMID: 32454063 DOI: 10.1016/j.dci.2020.103751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Developmental pathways for B cell lymphogenesis are sufficiently known only in mice and humans. However, both of these species rearrange immunoglobulin heavy chains (IgH) before light chains (IgL) while IgL precedes IgH rearrangement in swine. We demonstrate here that this reversed order of rearrangements have some concealed consequences: (1) we confirmed that although IgLκ rearrangement is initial, most IgLλ+ B cells are generated earlier and before IgH rearrangements, while most IgLκ+ B cells later and after IgH rearrangements, (2) the second IgLκ rearrangement can occur after IgLλ rearrangement, (3) early formed B cells bear only single in-frame IgH rearrangements, (4) many IgLκ+ B cells carry IgLλ rearrangements that can be productive and occurring on both alleles in one cell, and (5) although VpreB and λ5 genes are present in swine, they are preferentially expressed in non-B cells. In summary, our findings reveal that swine use an alternative B cell developmental pathway as compared to mice and humans.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
6
|
Cordero-Solorzano J, Parmentier HK, Arts JAJ, van der Poel J, de Koning DJ, Bovenhuis H. Genome-wide association study identifies loci influencing natural antibody titers in milk of Dutch Holstein-Friesian cattle. J Dairy Sci 2019; 102:11092-11103. [PMID: 31548067 DOI: 10.3168/jds.2019-16627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
Abstract
Natural antibodies (NAb) are produced without any antigenic stimulation as a part of the innate immune system and provide a first line of defense against pathogens. Hence, they may be a useful trait when estimating an animal's potential immune competence and in selection for disease resistance. The aim of this study was to identify genomic regions associated with different NAb traits in milk and potentially describe candidate genes. Milk samples from 1,695 first-lactation Holstein Friesian cows with titer measurements for keyhole limpet hemocyanin, lipopolysaccharide, lipoteichoic acid, and peptidoglycan-binding total NAb and isotypes IgG1, IgM, and IgA were used. Genome-wide association study analyses were performed using imputed 777K SNP genotypes, accounting for relationships using pedigree information. Functional enrichment analysis was performed on the significantly associated genomic regions to look for candidate genes. For IgM NAb, significant associations (false discovery rate <0.05) were found on Bos taurus autosome (BTA) 17, 18, and 21 with candidate genes related to immunoglobulin structure and early B cell development. For IgG1, associations were found on BTA3, and we confirmed a quantitative trait loci on BTA21 previously reported for IgG NAb in serum. Our results provide new insights into the regulation of milk NAb that will help unravel the complex relationship between milk immunoglobulins and disease resistance in dairy cattle.
Collapse
Affiliation(s)
- Juan Cordero-Solorzano
- Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, Box 7023,750 07, Uppsala, Sweden; Wageningen University and Research, Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Henk K Parmentier
- Wageningen University and Research, Adaptation Physiology Group, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Joop A J Arts
- Wageningen University and Research, Adaptation Physiology Group, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Jan van der Poel
- Wageningen University and Research, Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Dirk Jan de Koning
- Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, Box 7023,750 07, Uppsala, Sweden
| | - Henk Bovenhuis
- Wageningen University and Research, Animal Breeding and Genomics, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| |
Collapse
|
7
|
Mol P, Kannegundla U, Dey G, Gopalakrishnan L, Dammalli M, Kumar M, Patil AH, Basavaraju M, Rao A, Ramesha KP, Prasad TSK. Bovine Milk Comparative Proteome Analysis from Early, Mid, and Late Lactation in the Cattle Breed, Malnad Gidda (Bos indicus). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:223-235. [PMID: 29389253 DOI: 10.1089/omi.2017.0162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bovine milk is important for both veterinary medicine and human nutrition. Understanding the bovine milk proteome at different stages of lactation has therefore broad significance for integrative biology and clinical medicine as well. Indeed, different lactation stages have marked influence on the milk yield, milk constituents, and nourishment of the neonates. We performed a comparative proteome analysis of the bovine milk obtained at different stages of lactation from the Indian indigenous cattle Malnad Gidda (Bos indicus), a widely available breed. The milk differential proteome during the lactation stages in B. indicus has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins at early, mid, and late lactation stages, we identified a total of 564 proteins, out of which 403 proteins were found to be differentially abundant at different lactation stages. As is expected of any body fluid proteome, 51% of the proteins identified in the milk were found to have signal peptides. Gene ontology analyses were carried out to categorize proteins altered across different lactation stages based on biological process and molecular function, which enabled us to correlate their significance in each lactation stage. We also investigated the potential pathways enriched in different lactation stages using bioinformatics pathway analysis tools. To the best of our knowledge, this study represents the first and largest inventory of milk proteins identified to date for an Indian cattle breed. We believe that the current study broadly informs both veterinary omics research and the emerging field of nutriproteomics during lactation stages.
Collapse
Affiliation(s)
- Praseeda Mol
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | | | - Gourav Dey
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Lathika Gopalakrishnan
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Manjunath Dammalli
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,6 Department of Biotechnology, Siddaganga Institute of Technology , Tumkur, India
| | - Manish Kumar
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,5 Manipal Academy of Higher Education , Manipal, Karnataka, India
| | - Arun H Patil
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India .,7 School of Biotechnology, KIIT University , Bhubaneswar, India
| | | | - Akhila Rao
- 3 National Dairy Research Institute , Bangalore, India
| | | | - Thottethodi Subrahmanya Keshava Prasad
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 Centre for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University) , Mangalore, India
| |
Collapse
|
8
|
Schwab UE, Tallmadge RL, Matychak MB, Felippe MJB. Effects of autologous stromal cells and cytokines on differentiation of equine bone marrow-derived progenitor cells. Am J Vet Res 2017; 78:1215-1228. [PMID: 28945121 DOI: 10.2460/ajvr.78.10.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop an in vitro system for differentiation of equine B cells from bone marrow hematopoietic progenitor cells on the basis of protocols for other species. SAMPLE Bone marrow aspirates aseptically obtained from 12 research horses. PROCEDURES Equine bone marrow CD34+ cells were sorted by use of magnetic beads and cultured in medium supplemented with cytokines (recombinant human interleukin-7, equine interleukin-7, stem cell factor, and Fms-like tyrosine kinase-3), murine OP9 stromal cell preconditioned medium, and equine fetal bone marrow mesenchymal stromal cell preconditioned medium. Cells in culture were characterized by use of flow cytometry, immunocytofluorescence microscopy, and quantitative reverse-transcriptase PCR assay. RESULTS For these culture conditions, bone marrow-derived equine CD34+ cells differentiated into CD19+IgM+ B cells that expressed the signature transcription factors early B-cell factor and transcription factor 3. These conditions also supported the concomitant development of autologous stromal cells, and their presence was supportive of B-cell development. CONCLUSIONS AND CLINICAL RELEVANCE Equine B cells were generated from bone marrow aspirates by use of supportive culture conditions. In vitro generation of equine autologous B cells should be of use in studies on regulation of cell differentiation and therapeutic transplantation.
Collapse
|
9
|
Pasman Y, Merico D, Kaushik AK. Preferential expression of IGHV and IGHD encoding antibodies with exceptionally long CDR3H and a rapid global shift in transcriptome characterizes development of bovine neonatal immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:495-507. [PMID: 27601209 DOI: 10.1016/j.dci.2016.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
With an objective to understand natural development of bovine neonatal immunity, we analyzed 18 RNA-seq libraries from peripheral blood lymphocytes of three neonatal calves pre- (day 0) and post-colostrum (7, 14 and 28) uptake as compared to their dams. A significant global shift in neonatal transcriptome occurs within first week post-birth, in contrast to dams, with an upregulation of 717 genes. Global pathway analysis of the transcriptome revealed 110 differentially expressed immune-related genes, such as, complement, MHCII, chemokine receptors, defensins and cytokines, at birth. The signaling molecules (LAX1, BLK) and transcription factors (GATA3, FOXP3) are expressed at high levels. High expression of GATA3 transcription factor at birth seems to skew the neonatal immune response towards TH2 type. The high levels of T-cell signaling molecules, CD3G and CD3D, at birth are important in neonatal T cell development. Unlike adults, IGKC expression is high in the neonates where IGKV12 is preferentially expressed at birth. But IGLC is predominant in both neonates and adult where IGLV3.4 is preferentially expressed in B cells at birth. Both IGHM and IGHD are expressed at birth and IGHM achieves adult levels by day 7. This is followed by IGHA and IGHG expression 14-28 days post-birth. Importantly, preferential expression of IGHV1S1(BF4E9) and longest IGHD2(DH2) genes that encode immunoglobulin with exceptionally long CDR3H at birth indicates their critical role, as B cell antigen receptor, in the B cell development via idiotype-anti-idiotype interactions. The transcriptome signatures described here permit assessment bovine neonatal immunocompetence. Bovine neonates acquire innate and IgM-mediated humoral immunocompetence within first week post-birth.
Collapse
Affiliation(s)
- Yfke Pasman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Azad K Kaushik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
10
|
Liljavirta J, Niku M, Pessa-Morikawa T, Ekman A, Iivanainen A. Expansion of the preimmune antibody repertoire by junctional diversity in Bos taurus. PLoS One 2014; 9:e99808. [PMID: 24926997 PMCID: PMC4057420 DOI: 10.1371/journal.pone.0099808] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022] Open
Abstract
Cattle have a limited range of immunoglobulin genes which are further diversified by antigen independent somatic hypermutation in fetuses. Junctional diversity generated during somatic recombination contributes to antibody diversity but its relative significance has not been comprehensively studied. We have investigated the importance of terminal deoxynucleotidyl transferase (TdT) -mediated junctional diversity to the bovine immunoglobulin repertoire. We also searched for new bovine heavy chain diversity (IGHD) genes as the information of the germline sequences is essential to define the junctional boundaries between gene segments. New heavy chain variable genes (IGHV) were explored to address the gene usage in the fetal recombinations. Our bioinformatics search revealed five new IGHD genes, which included the longest IGHD reported so far, 154 bp. By genomic sequencing we found 26 new IGHV sequences that represent potentially new IGHV genes or allelic variants. Sequence analysis of immunoglobulin heavy chain cDNA libraries of fetal bone marrow, ileum and spleen showed 0 to 36 nontemplated N-nucleotide additions between variable, diversity and joining genes. A maximum of 8 N nucleotides were also identified in the light chains. The junctional base profile was biased towards A and T nucleotide additions (64% in heavy chain VD, 52% in heavy chain DJ and 61% in light chain VJ junctions) in contrast to the high G/C content which is usually observed in mice. Sequence analysis also revealed extensive exonuclease activity, providing additional diversity. B-lymphocyte specific TdT expression was detected in bovine fetal bone marrow by reverse transcription-qPCR and immunofluorescence. These results suggest that TdT-mediated junctional diversity and exonuclease activity contribute significantly to the size of the cattle preimmune antibody repertoire already in the fetal period.
Collapse
Affiliation(s)
- Jenni Liljavirta
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Anna Ekman
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
11
|
Liljavirta J, Ekman A, Knight JS, Pernthaner A, Iivanainen A, Niku M. Activation-induced cytidine deaminase (AID) is strongly expressed in the fetal bovine ileal Peyer's patch and spleen and is associated with expansion of the primary antibody repertoire in the absence of exogenous antigens. Mucosal Immunol 2013; 6:942-9. [PMID: 23299615 DOI: 10.1038/mi.2012.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 11/27/2012] [Indexed: 02/04/2023]
Abstract
Due to a limited range of immunoglobulin (Ig) genes, cattle and several other domestic animals rely on postrecombinatorial amplification of the primary repertoire. We report that activation-induced cytidine deaminase (AID) is strongly expressed in the fetal bovine ileal Peyer's patch and spleen but not in fetal bone marrow. The numbers of IGHV (immunoglobulin heavy chain variable) mutations correlate with AID expression. The mutational profile in the fetuses is similar to postnatal and immunized calves, with targeting of complementarity-determining region (CDR) over framework region (FR), preference of replacement over silent mutations in CDRs but not in FRs, and targeting of the AID hotspot motif RGYW/WRCY. Statistical analysis indicates negative selection on FRs and positive selection on CDRs. Our results suggest that AID-mediated somatic hypermutation and selection take place in bovine fetuses, implying a role for AID in the diversification of the primary antibody repertoire in the absence of exogenous antigens.
Collapse
Affiliation(s)
- J Liljavirta
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
12
|
Xu B, Wang J, Zhang M, Wang P, Wei Z, Sun Y, Tao Q, Ren L, Hu X, Guo Y, Fei J, Zhang L, Li N, Zhao Y. Expressional analysis of immunoglobulin D in cattle (Bos taurus), a large domesticated ungulate. PLoS One 2012; 7:e44719. [PMID: 23028592 PMCID: PMC3441446 DOI: 10.1371/journal.pone.0044719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 08/09/2012] [Indexed: 12/29/2022] Open
Abstract
For decades, it has remained unknown whether artiodactyls, such as cattle, pigs, and sheep, express immunoglobulin D (IgD), although the δ gene was identified in these species nearly 10 years ago. By developing a mouse anti-bovine IgD heavy chain monoclonal antibody (13C2), we show that secreted bovine IgD was present mainly as a monomer in serum and was heavily glycosylated by N-linked saccharides. Nonetheless, IgD was detectable in some but not all of the Holstein cattle examined. Membrane-bound IgD was detected in the spleen by western blotting. Flow cytometric analysis demonstrated that IgD-positive B cells constituted a much lower percentage of B cells in the bovine spleen (∼6.8% of total B cells), jejunal Peyer's patches (∼0.8%), and peripheral blood leukocytes (∼1.2%) than in humans and mice. Furthermore, IgD-positive B cells were almost undetectable in bovine bone marrow and ileal Peyer's patches. We also demonstrated that the bovine δ gene can be expressed via class switch recombination. Accordingly, bovine δ germline transcription, which involves an Iδ exon and is highly homologous to Iμ, was confirmed. However, we could not identify an Iδ promoter, despite bovine Eμ demonstrating both enhancer and promoter activity. This study has answered a long-standing question in cattle B cell biology and significantly contributes to our understanding of B cell development in this species.
Collapse
Affiliation(s)
- Beilei Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Jing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Min Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Ping Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Henan, P. R. China
| | - Yi Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Qiqing Tao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Ying Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Jing Fei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Lei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, P. R. China
- * E-mail:
| |
Collapse
|