1
|
Pudgerd A, Saedan S, Santimanawong W, Weerachatyanukul W, Jariyapong P, Chaijarasphong T, Jongsomchai K, Sritunyalucksana K, Vanichviriyakit R, Chotwiwatthanakun C. Genome editing of WSSV CRISPR/Cas9 and immune activation extends the survival of infected Penaeus vannamei. Sci Rep 2024; 14:26306. [PMID: 39487257 PMCID: PMC11530655 DOI: 10.1038/s41598-024-78277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
White spot syndrome virus (WSSV) is an exceptionally harmful virus that generally causes high levels of mortality in cultured shrimp. Attempts at viral suppression have been made to control the disease and have achieved limited efficiency. Recent advances in genome editing technology using CRISPR/Cas9 have led to potential innovations to prevent or treat many viral diseases. In this study, a CRISPR/Cas9 system was applied to WSSV genome cleavage to suppress WSSV infection in shrimp. The U6 promoter sequence was identified. A chimeric DNA vector consisting of the shrimp U6 promoter with gRNA expression sequences specific to two sites of the WSSV genome and the WSSV ribonucleotide reductase promoter with the Cas9 DNA sequence in pAC-sgRNA-Cas9 was constructed. The expression of gRNAs specific to the WSSV genome and Cas9 was determined in primary cultured hemocyte cells and in shrimp tissue via RT‒PCR. The efficacy of CRISPR/Cas9-WSSV for WSSV genome cleavage was determined in vitro and against WSSV-infected Penaeus vannamei. The reaction of synthetic gRNAs and recombinant Cas9 was able to cleave WSSV DNA amplicons, and shrimp that received CRISPR/Cas9-WSSV presented significantly lower WSSV DNA. In addition to interfering with viral DNA propagation, CRISPR/Cas9-WSSV encapsulated with IHHNV-VLP also stimulated an immune-related gene response. Treatment with CRISPR/Cas9-WSSV against WSSV challenge resulted in a significantly longer survival period. This finding has led to the development and application of a CRISPR/Cas9 system for WSSV infectious disease control, which could be used for managing shrimp aquaculture in the future.
Collapse
Affiliation(s)
- Arnon Pudgerd
- Division of Anatomy, School of Medical Sciences, University of Phayao, Maeka, Muang, Phayao, 56000, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Sukanya Saedan
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Wanida Santimanawong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Pitchanee Jariyapong
- School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand
| | - Thawatchai Chaijarasphong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kamonwan Jongsomchai
- Division of Anatomy, School of Medical Sciences, University of Phayao, Maeka, Muang, Phayao, 56000, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
2
|
Zhang L, Wei C, Guo Y, Hu J, Wang M. Molecular identification and functional characterization of a C-type lectin gene in Meretrix meretrix. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109833. [PMID: 39147178 DOI: 10.1016/j.fsi.2024.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
C-type lectins (CTLs) are a kind of Ca2+-dependent immunoreactive factors, which participated in pathogens recognition and defense. The present study identified a new CTL from hard clam Meretrix meretrix (designated as MmCTL4). The full-length of MmCTL4 cDNA was 608 bp, encoding a presumed signal peptide of 19 bp and a carbohydrate recognition domain (CRD) of 131 bp. The tertiary structure of recombinant MmCTL4 protein (rMmCTL4) was the typical long double-ring structure with three conserved disulfide bonds, and the motifs in Ca2+-binding sites of MmCTL4 were QPN and WSD. The SYBR Green real-time PCR analysis indicated that MmCTL4 was widely expressed in the hemocytes, hepatopancreas and mantle of healthy clams. After Vibrio splendidus stimulation, the temporal expression profile of MmCTL4 mRNA in hemocytes and hepatopancreas increased by 7.8-fold at 6 hpi and 3.9-fold at 12 hpi, respectively. The cDNA fragments encoding MmCTL4 were recombined into pET-32a (+) vectors, and transformed into Escherichia coli BL21 (DE3). The rMmCTL4 with the presence of Ca2+ performed obvious hemagglutination activity, and could agglutinate E. coli, Bacillus subtilis, and Staphylococcus aureus, while it only weakly agglutinate Vibrio parahaemolyticus and fungi P. pastoris. The agglutination activity of rMmCTL4 were significantly inhibited by D-mannose, D-xylose, D-lactose, maltose and lipopolysaccharides. These results indicated that MmCTL4, as a class of typical pattern recognition receptors (PRRs), could protect the host against pathogen invasion in the innate immunity of clams.
Collapse
Affiliation(s)
- Lu Zhang
- Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Cun Wei
- Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Ying Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
| | - Jingjie Hu
- Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Mengqiang Wang
- Hainan Key Laboratory of Tropical Aquatic Germplasm, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
3
|
Huo W, Qin L, Guo W, Zhang X, Xia X. Characteristics and functional analysis of a novel mannose receptor in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109820. [PMID: 39117127 DOI: 10.1016/j.fsi.2024.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
The mannose receptor (MR) plays a key role in the innate immune system as a pattern recognition receptor. Here, a novel type of mannose receptor, named PvMR2, was identified from Penaeus vannamei (P. vannamei). The PvMR2 coding sequence (CDS) obtained was 988 base pairs in length, encoding a protein consisting of 328 amino acids. This protein includes a signal peptide and two classical C-type lectin domains (CTLD). Quantitative real-time PCR showed that PvMR2 was distributed in all detected tissues, with the highest levels in the intestines and stomach. Following a bacterial challenge with Vibrio anguillarum (V. anguillarum), PvMR2 showed significant up-regulation in both the intestines and stomach of shrimp. To validate the function of PvMR2, recombinant proteins were extracted and purified using a His-tag. The resulting rPvMR2 demonstrated binding capability with lipopolysaccharides (LPS) and peptidoglycan (PGN) in a dose-dependent manner, affirming its binding affinity. The purified rPvMR2 demonstrated calcium-independent binding activity towards both Gram-positive bacteria (V. anguilliarum and Vibrio parahaemolyticus) and Gram-negative bacteria (Escherichia coli and Aeromonas Veronii). Antibacterial assays confirmed that rPvMR2 inhibits bacterial growth. Intestinal adhesion and adhesion inhibition experiments confirmed that the rPvMR2 can be used to reduce the adhesion capacity of harmful bacteria in the gut. Phagocytosis experiments have shown that rPvMR2 promotes phagocytosis in hemocytes and protects the host from external infection. Treatment with recombinant PvMR2 significantly bolstered bacterial clearance within the hemolymph and markedly augmented shrimp survival post-infection with V. anguillarum. These results suggest that PvMR2 has agglutination, growth inhibition, adhesion inhibition, clearance promotion, and phagocytosis effects on harmful bacteria, and plays a crucial role in the antimicrobial immune response of P. vannamei.
Collapse
Affiliation(s)
- Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lu Qin
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wanwan Guo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaowen Zhang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
4
|
Yang W, Sun J, Leng J, Li Y, Guo Q, Wang L, Song L. A novel lectin with a distinct Gal_Lectin and CUB domain mediates haemocyte phagocytosis in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105222. [PMID: 38964676 DOI: 10.1016/j.dci.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Invertebrate lectins exhibit structural diversity and play crucial roles in the innate immune responses by recognizing and eliminating pathogens. In the present study, a novel lectin containing a Gal_Lectin, a CUB and a transmembrane domain was identified from the Pacific oyster Crassostrea gigas (defined as CgGal-CUB). CgGal-CUB mRNA was detectable in all the examined tissues with the highest expression in adductor muscle (11.00-fold of that in haemocytes, p < 0.05). The expression level of CgGal-CUB mRNA in haemocytes was significantly up-regulated at 3, 24, 48 and 72 h (8.37-fold, 12.13-fold, 4.28-fold and 10.14-fold of that in the control group, respectively) after Vibrio splendidus stimulation. The recombinant CgGal-CUB (rCgGal-CUB) displayed binding capability to Mannan (MAN), peptidoglycan (PGN), D-(+)-Galactose and L-Rhamnose monohydrate, as well as Gram-negative bacteria (Escherichia coli, V. splendidus and Vibrio anguillarum), Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, and Bacillus sybtilis) and fungus (Pichia pastoris). rCgGal-CUB was also able to agglutinate V. splendidus, and inhibit V. splendidus growth. Furthermore, rCgGal-CUB exhibited the activities of enhancing the haemocyte phagocytosis towards V. splendidus, and the phagocytosis rate of haemocytes was descended in blockage assay with CgGal-CUB antibody. These results suggested that CgGal-CUB served as a pattern recognition receptor to bind various PAMPs and bacteria, and enhanced the haemocyte phagocytosis towards V. splendidus.
Collapse
Affiliation(s)
- Wenwen Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiuyan Guo
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
5
|
Ren Q, Huang X. The first report of a C-type lectin contains a CLIP domain involved in antibacterial defense in Macrobrachium nipponense. Int J Biol Macromol 2024; 275:133705. [PMID: 38972646 DOI: 10.1016/j.ijbiomac.2024.133705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
We identified a novel C-type lectin (CTL) from Macrobrachium nipponense, designated as Mn-clip-Lec. It consists of 1315 bp with an open reading frame of 1098 bp, encoding a polypeptide of 365 amino acids. Mn-clip-Lec contains 6 exons and 5 introns. Mn-clip-Lec possessed a CLIP domain at the N-terminal and two carbohydrate recognition domains at the C-terminal. Interaction between Mn-clip-Lec and MnLec was found by Yeast two-hybrid analysis. The expressions of Mn-clip-Lec, MnLec, prophenoloxidase (proPO)-activating system-associated genes (MnPPAF, MnPPAE, and MnPO), and antimicrobial peptides (AMPs) (MnALF and MnCRU) were up-regulated after the challenge with Staphylococcus aureus. RNA interference (RNAi)-mediated suppression of the Mn-clip-Lec and MnLec genes in S. aureus-challenged prawns reduced the transcripts of MnPPAF, MnPPAE, MnPO, MnALF and MnCRU. Knockdown of Mn-clip-Lec and MnLec resulted in decrease in PO activity in M. nipponense infected with S. aureus. The recombinant Mn-clip-Lec (rMn-clip-Lec) protein bound all tested bacteria and agglutinated S. aureus. A sugar-binding assay revealed that rMn-clip-Lec could bind to LPS or PGN. rMn-clip-Lec accelerated the clearance of S. aureus in vivo. Our findings suggest that Mn-clip-Lec and its interacting MnLec play important roles in the induction of the proPO system and AMPs expression in M. nipponense during bacterial infection.
Collapse
Affiliation(s)
- Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu Province, PR China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu Province, PR China
| |
Collapse
|
6
|
Cui X, Jiang Z, Xu J, Yu Y, Liu Q, Ren Q, Wang L, Wan X, Huang X. Immune function of a C-type lectin with long tandem repeats and abundant threonine in the ridgetail white prawn Exopalaemon carinicauda. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109721. [PMID: 38917950 DOI: 10.1016/j.fsi.2024.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
C-type lectins (CTLs) are an important class of pattern recognition receptors (PRRs) that exhibit structural and functional diversity in invertebrates. Repetitive DNA sequences are ubiquitous in eukaryotic genomes, representing distinct modes of genome evolution and promoting new gene generation. Our study revealed a new CTL that is composed of two long tandem repeats, abundant threonine, and one carbohydrate recognition domain (CRD) in Exopalaemon carinicauda and has been designated EcTR-CTL. The full-length cDNA of EcTR-CTL was 1242 bp long and had an open reading frame (ORF) of 999 bp that encoded a protein of 332 amino acids. The genome structure of EcTR-CTL contains 4 exons and 3 introns. The length of each repeat unit in EcTR-CTL was 198 bp, which is different from the short tandem repeats reported previously in prawns and crayfish. EcTR-CTL was abundantly expressed in the intestine and hemocytes. After Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, the expression level of EcTR-CTL in the intestine was upregulated. Knockdown of EcTR-CTL downregulated the expression of anti-lipopolysaccharide factor, crustin, and lysozyme during Vibrio infection. The recombinant CRD of EcTR-CTL (rCRD) could bind to bacteria, lipopolysaccharides, and peptidoglycans. Additionally, rCRD can directly bind to WSSV. These findings indicate that 1) CTLs with tandem repeats may be ubiquitous in crustaceans, 2) EcTR-CTL may act as a PRR to participate in the innate immune defense against bacteria via nonself-recognition and antimicrobial peptide regulation, and 3) EcTR-CTL may play a positive or negative role in the process of WSSV infection by capturing virions.
Collapse
Affiliation(s)
- Xinyi Cui
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zilin Jiang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Juntao Xu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yunhao Yu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qingchuan Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, 210044, China
| | - Libao Wang
- Institute of Oceanology & Marine Fisheries, Nantong, Jiangsu Province, 226007, China.
| | - Xihe Wan
- Institute of Oceanology & Marine Fisheries, Nantong, Jiangsu Province, 226007, China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
7
|
Liu Z, Zheng J, Li H, Fang K, Wang S, He J, Zhou D, Weng S, Chi M, Gu Z, He J, Li F, Wang M. Genome assembly of redclaw crayfish (Cherax quadricarinatus) provides insights into its immune adaptation and hypoxia tolerance. BMC Genomics 2024; 25:746. [PMID: 39080519 PMCID: PMC11290268 DOI: 10.1186/s12864-024-10673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The introduction of non-native species is a primary driver of biodiversity loss in freshwater ecosystems. The redclaw crayfish (Cherax quadricarinatus) is a freshwater species that exhibits tolerance to hypoxic stresses, fluctuating temperatures, high ammonia concentration. These hardy physiological characteristics make C. quadricarinatus a popular aquaculture species and a potential invasive species that can negatively impact tropical and subtropical ecosystems. Investigating the genomic basis of environmental tolerances and immune adaptation in C. quadricarinatus will facilitate the development of management strategies of this potential invasive species. RESULTS We constructed a chromosome-level genome of C. quadricarinatus by integrating Nanopore and PacBio techniques. Comparative genomic analysis suggested that transposable elements and tandem repeats drove genome size evolution in decapod crustaceans. The expansion of nine immune-related gene families contributed to the disease resistance of C. quadricarinatus. Three hypoxia-related genes (KDM3A, KDM5A, HMOX2) were identified as being subjected to positive selection in C. quadricarinatus. Additionally, in vivo analysis revealed that upregulating KDM5A was crucial for hypoxic response in C. quadricarinatus. Knockdown of KDM5A impaired hypoxia tolerance in this species. CONCLUSIONS Our results provide the genomic basis for hypoxic tolerance and immune adaptation in C. quadricarinatus, facilitating the management of this potential invasive species. Additionally, in vivo analysis in C. quadricarinatus suggests that the role of KDM5A in the hypoxic response of animals is complex.
Collapse
Affiliation(s)
- Ziwei Liu
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Haoyang Li
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Ke Fang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Sheng Wang
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Dandan Zhou
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhimin Gu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Fei Li
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
8
|
Wei Y, Xiao Y, Liu Q, Du Z, Xiao T. Preliminary study of BF/C2 on immune mechanism of grass carp against GCRV infection. BMC Genomics 2024; 25:715. [PMID: 39048939 PMCID: PMC11271160 DOI: 10.1186/s12864-024-10609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BF/C2 is a crucial molecule in the coagulation complement cascade pathway and plays a significant role in the immune response of grass carp through the classical, alternative, and lectin pathways during GCRV infection. In vivo experiments demonstrated that the mRNA expression levels of BF/C2 (A, B) in grass carp positively correlated with GCRV viral replication at various stages of infection. Excessive inflammation leading to death coincided with peak levels of BF/C2 (A, B) mRNA expression and GCRV viral replication. Correspondingly, BF/C2 (A, B) recombinant protein, CIK cells and GCRV co-incubation experiments yielded similar findings. Therefore, 3 h (incubation period) and 9 h (death period) were selected as critical points for this study. Transcriptome sequencing analysis revealed significant differences in the expression of BF/C2A and BF/C2B during different stages of CIK infection with GCRV and compared to the blank control group (PBS). Specifically, the BF/C2A_3 and BF/C2A_9 groups exhibited 2729 and 2228 differentially expressed genes (DEGs), respectively, with 1436 upregulated and 1293 downregulated in the former, and 1324 upregulated and 904 downregulated in the latter. The BF/C2B_3 and BF/C2B_9 groups showed 2303 and 1547 DEGs, respectively, with 1368 upregulated and 935 downregulated in the former, and 818 upregulated and 729 downregulated in the latter. KEGG functional enrichment analysis of these DEGs identified shared pathways between BF/C2A and PBS groups at 3 and 9 h, including the C-type lectin receptor signaling pathway, protein processing in the endoplasmic reticulum, Toll-like receptor signaling pathway, Salmonella infection, apoptosis, tight junction, and adipocytokine signaling pathway. Additionally, the BF/C2B groups at 3 and 9 h shared pathways related to protein processing in the endoplasmic reticulum, glycolysis/gluconeogenesis, and biosynthesis of amino acids. The mRNA levels of these DEGs were validated in cellular models, confirming consistency with the sequencing results. In addition, the mRNA expression levels of these candidate genes (mapk1, il1b, rela, nfkbiab, akt3a, hyou1, hsp90b1, dnajc3a et al.) in the head kidney, kidney, liver and spleen of grass carp immune tissue were significantly different from those of the control group by BF/C2 (A, B) protein injection in vivo. These candidate genes play an important role in the response of BF/C2 (A, B) to GCRV infection and it also further confirmed that BF/C2 (A, B) of grass carp plays an important role in coping with GCRV infection.
Collapse
Affiliation(s)
- Yuling Wei
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Qiaolin Liu
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
9
|
Ayres BS, Varela Junior AS, Corcini CD, Lopes EM, Nery LEM, Maciel FE. Effects of high temperature and LPS injections on the hemocytes of the crab Neohelice granulata. J Invertebr Pathol 2024; 205:108144. [PMID: 38810835 DOI: 10.1016/j.jip.2024.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Temperature fluctuations, particularly elevated temperatures, can significantly affect immune responses. These fluctuations can influence the immune system and alter its response to infection signals, such as lipopolysaccharide (LPS). Therefore, this study was designed to investigate how high temperatures and LPS injections collectively influence the immune system of the crab Neohelice granulata. Two groups were exposed to 20 °C (control) or 33 °C for four days. Subsequently, half were injected with 10 μL of physiological crustacean (PS), while the rest received 10 μL of LPS [0.1 mg.kg-1]. After 30 min, the hemolymph samples were collected. Hemocytes were then isolated and assessed for various parameters using flow cytometry, including cell integrity, DNA fragmentation, total hemocyte count (THC), differential hemocyte count (DHC), reactive oxygen species (ROS) level, lipid peroxidation (LPO), and phagocytosis. Results showed lower cell viability at 20 °C, with more DNA damage in the same LPS-injected animals. There was no significant difference in THC, but DHC indicated a decrease in hyaline cells (HC) at 20 °C following LPS administration. In granular cells (GC), an increase was observed after both PS and LPS were injected at the same temperature. In semi-granular cells (SGC), there was a decrease at 20 °C with the injection of LPS, while at a temperature of 33 °C, the SGC there was a decrease only in SGC injected with LPS. Crabs injected with PS and LPS at 20 °C exhibited higher levels of ROS in GC and SGC, while at 33 °C, the increase was observed only in GC and SGC cells injected with LPS. A significant increase in LPO was observed only in SGC cells injected with PS and LPS at 20 °C and 33 °C. Phagocytosis decreased in animals at 20 °C with both injections and exposed to 33 °C only in those injected with LPS. These results suggest that elevated temperatures induce changes in immune system parameters and attenuate the immune responses triggered by LPS.
Collapse
Affiliation(s)
- Bruna Soares Ayres
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Antonio Sergio Varela Junior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Carine Dahl Corcini
- Faculdade de Medicina Veterinária, Universidade Federal de Pelotas- UFPEL, Campus Universitário, S / N, Capão do Leão, Pelotas, RS 96160-000, Brazil
| | - Eduarda Marques Lopes
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil
| | - Fábio Everton Maciel
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS 96201-900, Brazil.
| |
Collapse
|
10
|
Fan W, Chen J, Cao Y, Tan J, Li J, Wang S, Jin P, Song X. A novel C-type lectin protein (BjCTL5) interacts with apoptosis stimulating proteins of p53 (ASPP) to activate NF-κB signaling pathway in primitive chordate. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105166. [PMID: 38521378 DOI: 10.1016/j.dci.2024.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
C-type lectin proteins (CTLs), a group of pattern recognition receptors (PRRs), play pivotal roles in immune responses. However, the signal transduction and regulation of CTLs in cephalochordates have yet to be explored. In this study, we examined the composition of CTLs in Branchiostoma japonicum, identifying a total of 272 CTLs. These CTLs underwent further analysis concerning domain arrangement, tandem and segmental duplication events. A multidomain C-type lectin gene, designated as BjCTL5, encompassing CLECT, KR, CUB, MAM, and SR domains, was the focal point of our investigation. BjCTL5 exhibits ubiquitous expression across all detected tissues and is responsive to stimulation by LPS, mannose, and poly (I:C). The recombinant protein of BjCTL5 can bind to Escherichia coli and Staphylococcus aureus, inducing their agglutination and inhibiting the proliferation of S. aureus. Yeast two-hybrid, CoIP, and confocal immunofluorescence experiments revealed the interaction between BjCTL5 and apoptosis-stimulating proteins of p53, BjASPP. Intriguingly, BjCTL5 was observed to induce the luciferase activity of the NF-κB promoter in HEK293T cells. These results suggested a potential interaction between BjCTL5 and BjASPP, implicating that they involve in the activation of the NF-κB signaling pathway, which provides an evolutionary viewpoint on NF-κB signaling pathway in primitive chordate.
Collapse
Affiliation(s)
- Wenyu Fan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianing Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunpeng Cao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiabo Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinlong Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| | - Xiaojun Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Xu Y, Yang H, Hu J, Bao Z, Wang M. A unique Ca 2+-inhibited C-type lectin in shrimp Fenneropenaeuschinensis. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109638. [PMID: 38754650 DOI: 10.1016/j.fsi.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
C-type lectins (CTLs) are glycan-binding pattern recognition receptors (PRRs) that can bind to carbohydrates on pathogen surfaces, triggering immune responses in shrimp innate immunity. In this study, a unique Ca2+-inhibited CTL named FcLec was identified and characterized in Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA sequence of FcLec was 976 bp (GenBank accession number KU361826), with a 615 bp open reading frame (ORF) encoding 204 amino acids. FcLec possesses a C-type lectin-like domain (CTLD) containing four conserved cysteines (Cys105, Cys174, Cys192, and Cys200) and two sugar-binding site structures (QPD and LNP). The tertiary structure of FcLec deduced revealed three α-helices and eight β-pleated sheets. The mRNA expression levels of FcLec in hemocytes and the hepatopancreas were markedly elevated after stimulation with Vibrio anguillarum and white spot syndrome virus (WSSV). The recombinant FcLec protein exhibited Ca2+-independent hemagglutination and bacterial agglutination, but these activities were observed only in the presence of EDTA to chelate metal ions. These findings suggest that FcLec plays important and functionally distinct roles in the shrimp's innate immune response to bacteria and viruses, enriching the current understanding of the relationship between CTL activity and Ca2+ in invertebrates.
Collapse
Affiliation(s)
- Yajin Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Haoran Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jingjie Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| | - Zhenmin Bao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Mengqiang Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
12
|
Sahoo S, Badhe MR, Paul A, Sahoo PK, Suryawanshi AR, Panda D, Pillai BR, Baliarsingh S, Patnaik BB, Mohanty J. Isolation and characterization of a lectin-like chitinase from the hepatopancreas of freshwater prawn, Macrobrachium rosenbergii. Biochimie 2024; 221:125-136. [PMID: 37769935 DOI: 10.1016/j.biochi.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
A lectin was isolated from the hepatopancreas of freshwater prawn, Macrobrachium rosenbergii by affinity chromatography using mucin-sepharose matrix. The purity of the isolated lectin was confirmed in native gradient PAGE that showed a single protein band of ∼37.9 kDa. In SDS-PAGE also one band of ∼43.3 kDa molecular weight was observed that indicated the protein to be a monomer. The band from the SDS-PAGE gel was identified through mass spectrometry as chitinase 1. The purified chitinase (50 μg/ml) hemagglutinated rabbit RBCs and, mucin and glucose inhibited hemagglutination with minimum concentrations of 0.1 mg/ml and 100 mM, respectively. Bacterial agglutination with Gram -ve Vibrio harveyi, Aeromonas sobria and Escherichia coli was also observed by this protein. Thus, chitinase 1 showed lectin-like properties besides its chitin hydrolytic activity. In western blot with hepatopancreas sample, rabbit antiserum against chitinase 1 cross-reacted to two additional proteins namely, chitinase 1C and obstructor E (a chitin-binding protein, CBP), besides its specific reactivity. An indirect ELISA was developed with the antiserum to quantify chitinases/CBP in hepatopancreas and serum samples of M. rosenbergii. The assay was used in samples from juvenile prawns following V. harveyi challenge. At 72 h post-challenge, significantly higher levels of chitinases/CBP were quantified in the hepatopancreas of the challenged group (1.8 ± 0.2 mg/g tissue) compared to the control (1.2 ± 0.1 mg/g tissue). This study suggests that the chitinase 1 protein with lectin-like properties is possibly induced at the protein level and can be putatively involved in the innate immune response of M. rosenbergii.
Collapse
Affiliation(s)
- Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | - Debabrata Panda
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bindu R Pillai
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Snigdha Baliarsingh
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India
| | - Bharat Bhusan Patnaik
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India; Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, 31538, South Korea; Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, 31538, South Korea
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
13
|
Viana JT, Rocha RDS, Maggioni R. Immunological lectins in shrimp Penaeus vannamei challenged with infectious myonecrosis virus (IMNV) under low-salinity conditions. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109471. [PMID: 38452959 DOI: 10.1016/j.fsi.2024.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Lectins are proteins capable of recognizing and binding to glycan in a specific way. In invertebrates, lectins are a crucial group of Pattern Recognition Proteins (PRRs), activating cellular and humoral responses in the innate immune system. The shrimp Penaeus vannamei is the main crustacean cultivated worldwide, however, the productivity of cultures is strongly affected by diseases, mainly viral ones, such as Infectious Myonecrosis (IMN). Thus, we investigated the participation of five lectins (LvAV, LvCTL4, LvCTL5, LvCTLU, and LvLdlrCTL) in IMNV-challenged shrimp. We verified upregulation gene profiles of lectins after IMNV-challenge, especially in hepatopancreas and gills, in addition to an increase in total hemocytes count (THC) after to 12 h post-infection (hpi). The bioinformatics characterization also revealed several sites of post-translational modification (PTM), such as phosphorylation and glycosylation, which possibly influence the action and stabilization of these lectins. We conclude that LvLdlrCTL and LvCTL5 are the lectins with greater participation in the activation of the immune system against IMNV, showing the greatest potential for PTM, higher upregulation levels, and overlapping with the THC and IMNV viral load.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil; Federal Institute of Education, Science and Technology of Ceara, 62580-000, Acaraú, CE, Brazil.
| | - Rafael Dos Santos Rocha
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil
| | - Rodrigo Maggioni
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceara, 60165-081, Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Li L, Li X, Zeng L, Wang Z, Deng N, Huang P, Hou J, Jian S, Zhao D. Molecular mechanism of the NOS/NOX regulation of antibacterial activity in Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110945. [PMID: 38278206 DOI: 10.1016/j.cbpb.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
To elucidate the role of nitric oxide synthase (NOS), which produces the free radical nitric oxide (NO), and nicotinamide adenine dinucleotide phosphate oxidase (NOX), which produces the superoxide anion (O2-), in the innate immunity of Eriocheir sinensis, the full lengths of the NOS and NOX genes were cloned via rapid amplification of the cDNA ends and then expressed in the prokaryotic form to obtain the recombinant proteins, NOS-HIS and NOX-HIS. Through bacterial binding and stimulation experiments, the molecular mechanisms of NOS and NOX in the innate immunity of E. sinensis were explored. Based on the results, NOS and NOX were 5900 bp and 4504 bp long, respectively, and were evolutionarily conserved. Quantitative real-time PCR revealed that NOS and NOX were expressed in all studied tissues, and both were expressed in the highest amounts in hemocytes. NOS-HIS and NOX-HIS could bind to bacteria with different binding powers; their binding ability to gram-positive bacteria was higher than that of binding to gram-negative bacteria. After stimulation with Aeromonas hydrophila, NOS expression was significantly up-regulated at 3, 6, and 48 h, and NOX expression was significantly down-regulated at 3, 12, 24, and 48 h. After bacterial stimulation, the NOS enzyme activity in the serum of E. sinensis was also significantly up-regulated at 6 and 48 h, and the NOX enzyme activity was significantly down-regulated at 12 and 48 h, aligning with the gene expression trend. Moreover, the related free radical molecules, NO, O2-, and H2O2, tended to decrease after bacterial stimulation. Overall, the gene expression and enzyme activity of NOS and NOX had been changed respectively, and the contents of a series of free radical molecules (NO, O2- and H2O2) were induced in E. sinensis after bacterial stimulation, which then exert antibacterial immunity.
Collapse
Affiliation(s)
- Linjie Li
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Xiaoyong Li
- Department of Animal Husbandry and Aquatic Technology Extension and Application, Jiangxi Agricultural Technology Extension Center, Jiangxi 330046, China.
| | - Liugen Zeng
- Nanchang Academy of Agricultural Sciences, Jiangxi 330038, China
| | - Ziyu Wang
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Nan Deng
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Peiying Huang
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Jiahao Hou
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Shaoqin Jian
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China
| | - Daxian Zhao
- Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Jiangxi 330031, China; Laboratory of Aquatic Animal Healthy Breeding, Chongqing Research Institute of Nanchang University, Chongqing 400037, China.
| |
Collapse
|
15
|
Ma Y, Li W, Yang G, Fan Y, Wei P, Liu H, Li X, Gu W, Zhou J, Meng Q. Crab microRNA-381-5p regulates prophenoloxidase activation and phagocytosis to promote intracellular bacteria Spiroplasma eriocheiris infection by targeting mannose-binding protein. Int J Biol Macromol 2024; 264:130503. [PMID: 38428783 DOI: 10.1016/j.ijbiomac.2024.130503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Mannose-binding lectin plays an essential role in bacteria or virus-triggered immune response in mammals. Previous proteomic data revealed that in Eriocheir sinensis, the mannose-binding protein was differentially expressed after Spiroplasma eriocheiris infection. However, the function of mannose-binding protein against pathogen infection in invertebrates is poorly understood. In this study, a crab mannose-binding protein (EsMBP) was characterized and enhanced the host resistance to S. eriocheiris infection. The application of recombinant C-type carbohydrate recognition domain (CTLD) of EsMBP led to increased crab survival and decreased S. eriocheiris load in hemocytes. Meanwhile, the overexpression of CTLD of EsMBP in Raw264.7 cells inhibited S. eriocheiris intracellular replication. In contrast, depletion of EsMBP by RNA interference or antibody neutralization attenuated phenoloxidase activity and hemocyte phagocytosis, rendering host more susceptible to S. eriocheiris infection. Furthermore, miR-381-5p in hemocytes suppressed EsMBP expression and negatively regulated phenoloxidase activity to exacerbate S. eriocheiris invasion of hemocytes. Taken together, our findings revealed that crab mannose-binding protein was involved in host defense against S. eriocheiris infection and targeted by miR-381-5p, providing further insights into the control of S. eriocheiris spread in crabs.
Collapse
Affiliation(s)
- Yubo Ma
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Wenbo Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Guanzheng Yang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Yangzhi Fan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Panpan Wei
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Hongli Liu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, PR China.
| |
Collapse
|
16
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq revealed heterogeneous responses and functional differentiation of hemocytes against white spot syndrome virus infection in Litopenaeus vannamei. J Virol 2024; 98:e0180523. [PMID: 38323810 PMCID: PMC10949519 DOI: 10.1128/jvi.01805-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Huo W, Qin L, Guo W, Zhang X, Du Q, Xia X. PvMR1, a novel C-type lectin plays a crucial role in the antibacterial immune response of Pacific white shrimp, Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109346. [PMID: 38163494 DOI: 10.1016/j.fsi.2023.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
C-type lectins (CTLs) are important immune molecules in innate immune, which participate in non-self recognition and clearance of pathogens. Here, a new CTL with two distinct C-type lectin domains (CTLDs) from Pacific white shrimp Penaeus vannamei, designated as PvMR1 was identified. The obtained PvMR1 coding sequence (CDS) was 1044 bp long encoding a protein with 347 amino acids. PvMR1 had two CTLD, a conserved mannose-specific EPN motif and a galactose-specific QPD motif, clustering into the same branch as the crustacean CTLs. PvMR1 was widely distributed in shrimp tissues with the highest transcription level in the hepatopancreas, with significantly induced mRNA expression on the hepatopancreas and intestines after immune challenge with Vibrio anguillarum. In vitro assays with recombinant PvMR1 (rPvMR1) protein revealed that it exhibited a wide range of antimicrobial activity, bacterial binding ability, and bacterial agglutination activity in a Ca2+-independent manner. Moreover, PvMR1 promoted bacterial phagocytosis in hemocytes. Furthermore, rPvMR1 treatment could significantly enhance the bacterial clearance in hemolymph and greatly improved the survival of shrimp under V. anguillarum infection in vivo. These results collectively suggest that PvMR1 plays an important role in antibacterial immune response of P. vannamei.
Collapse
Affiliation(s)
- Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lu Qin
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wanwan Guo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaowen Zhang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Qiyan Du
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
18
|
Dai X, Xu Z, Jia R, Zhang L, Zheng L, Zhu Z, Gao T, Xu Y, Huang X, Ren Q. Lectin diversity and their positive roles in WSSV replication through regulation of calreticulin expression and inhibiting ALFs expression. Int J Biol Macromol 2024; 258:128996. [PMID: 38151079 DOI: 10.1016/j.ijbiomac.2023.128996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
In biological evolution, gene duplication (GD) generates new genes to facilitate new functions. C-type lectins (CTLs) in crayfish have been extended by GD to expand their family members. In this study, four CTL genes generated by GD were identified from Procambarus clarkii (PcLec1-4). Among these four genes, PcLec1 can also generate new isoforms with different numbers of tandem repeats through DNA slip mispairing. PcLec1-4 was widely expressed in multiple tissues. The expression levels of PcLec1-4 were upregulated in the intestine of P. clarkii upon white spot syndrome virus (WSSV) challenge at multiple time points. Further analysis indicated that GATA transcription factor regulated PcLec1-4 expression. RNA interference and recombinant PcLec1-4 protein injection experiments suggested that PcLec1-4 promoted the expression of calreticulin (PcCRT) and negatively regulated the expression of antimicrobial peptides, thereby promoting WSSV replication. This study contributes to the understanding of the function of CTLs produced by GD during WSSV invasion in crustaceans.
Collapse
Affiliation(s)
- Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Zhiqiang Xu
- Key Laboratory of Genetic Breeding and cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Rui Jia
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Lihua Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Liangmin Zheng
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Ziyue Zhu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Tianheng Gao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China.
| | - Yu Xu
- Key Laboratory of Genetic Breeding and cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, 210044, China.
| |
Collapse
|
19
|
Wang L, Zheng M, Liu J, Jin Z, Wang C, Gao M, Zhang H, Zhang X, Xia X. LDLa containing C-type lectin mediates phagocytosis of V.anguillarum and regulates immune effector genes in shrimp. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109361. [PMID: 38185393 DOI: 10.1016/j.fsi.2024.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
C-type lectins (CTLs) function as pattern recognition receptors (PRRs) by recognizing invading microorganisms, thereby triggering downstream immune events against infected pathogens. In this study, a novel CTL containing a low-density lipoprotein receptor class A (LDLa) domain was obtained from Litopenaeus vannamei, designed as LvLDLalec. Stimulation by the bacterial pathogen Vibrio anguillarum (V. anguillarum) resulted in remarkable up-regulation of LvLDLalec, as well as release of LvLDLalec into hemolymph. The rLvLDLalec protein possessed broad-spectrum bacterial binding and agglutinating activities, as well as hemocyte attachment ability. Importantly, LvLDLalec facilitated the bacterial clearance in shrimp hemolymph and protected shrimp from bacterial infection. Further studies revealed that LvLDLalec promoted hemocytes phagocytosis against V. anguillarum and lysosomes were involved in the process. Meanwhile, LvLDLalec participated in humoral immunity through activating and inducing nuclear translocation of Dorsal to regulate phagocytosis-related genes and antimicrobial peptides (AMPs) genes, thereby accelerated the removal of invading pathogens in vivo and improved the survival rate of L. vannamei. These results unveil that LvLDLalec serves as a PRR participate in cellular and humoral immunity exerting opsonin activity to play vital roles in the immune regulatory system of L. vannamei.
Collapse
Affiliation(s)
- Liuen Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Meimei Zheng
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jisheng Liu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zeyu Jin
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Cui Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Miaomiao Gao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hongwei Zhang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xiaowen Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, Henan, China.
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
20
|
Jiang FH, Huang Y, Yu XY, Cui LF, Shi Y, Song XR, Zhao Z. Identification and characterization of an L-type lectin from obscure puffer Takifugu obscurus in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109283. [PMID: 38092094 DOI: 10.1016/j.fsi.2023.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
L-type lectins (LTLs) contain a carbohydrate recognition domain homologous to leguminous lectins, and have functions in selective protein trafficking, sorting and targeting in the secretory pathway of animals. In this study, a novel LTL, designated as ToERGIC-53, was cloned and identified from obscure puffer Takifugu obscurus. The open reading frame of ToERGIC-53 contained 1554 nucleotides encoding 517 amino acid residues. The deduced ToERGIC-53 protein consisted of a signal peptide, a leguminous lectin domain (LTLD), a coiled-coil region, and a transmembrane region. Quantitative real-time PCR showed that ToERGIC-53 was expressed in all examined tissues, with the highest expression level in the liver. The expression of ToERGIC-53 was significantly upregulated after infection with Vibrio harveyi and Staphylococcus aureus. Recombinant ToERGIC-53-LTLD (rToERGIC-53-LTLD) protein could not only agglutinate and bind to one Gram-positive bacterium (S. aureus) and three Gram-negative bacteria (V. harveyi, V. parahaemolyticus and Aeromonas hydrophila), but also bind to glycoconjugates on the surface of bacteria such as lipopolysaccharide, peptidoglycan, mannose and galactose. In addition, rToERGIC-53-LTLD inhibited the growth of bacteria in vitro. All these results suggested that ToERGIC-53 might be a pattern recognition receptor involved in antibacterial immune response of T. obscurus.
Collapse
Affiliation(s)
- Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xin-Yue Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
21
|
Xu X, Yin P, Zhang Y, Yang H. The immune response of fairy shrimp Branchinella kugenumaensis against Edwardsiella anguillarum infections by de novo transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109260. [PMID: 38043874 DOI: 10.1016/j.fsi.2023.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
To explore the immune defense mechanisms of the ancient crustacean fairy shrimp (B.kugenumaensis) and uncover antibacterial-related gene resources, the present study analyzed the pathological changes in B. kugenumaensis infected with E. anguillarum. Differential gene expression changes between the infected and uninfected groups were investigated through comparative transcriptome sequencing to elucidate the molecular responses to the infection. Under transmission electron microscopy, the intestinal mucosal structure of B. kugenumaensis was damaged, the microvilli disappeared, the number of mitochondria and endoplasmic reticulum increased, mitochondria vacuolated and arranged disordered. The transcriptome data indicated that a total of 250,520,580 clean reads were assembled into 66,502 unigenes, with an average length of 789 bp and an N50 length of 1326 bp. Following bacterial infection, approximately 2678 differentially expressed genes (DEGs) were identified, with 1732 genes upregulated and 946 genes downregulated. The detected DEGs related to immune responses, particularly involving apoptosis, lysosome, autophagy, phagosome, and MAPK signaling pathways. Moreover, 9 immunity-related genes with different expressions were confirmed by using real-time quantitative PCR (RT-qPCR). This study first reports the pathogenicity of E. anguillarum on B. kugenumaensis and speculates that immune effectors such as lysozyme and lectin, as well as apoptosis, lysosome, and the MAPK signaling pathway, play crucial roles in the innate immunity of fairy shrimp. These findings deepen our understanding of fairy shrimp immune regulatory mechanisms and provide a theoretical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Xinrui Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Peng Yin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Liu P, Li W, Peng Y, Han S, Liang Z, Cen Y, Li X, Wang P, Lv H, Zhang Q, Chen H, Lin J. Molecular cloning, expression, and functional analysis of a putative lectin from the pearl oyster (Pinctada fucata, Gould 1850). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109215. [PMID: 37951320 DOI: 10.1016/j.fsi.2023.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 μg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 μg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 μg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 μg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 μg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.
Collapse
Affiliation(s)
- Peng Liu
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China.
| | - Wenyue Li
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yue Peng
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Siyin Han
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhongxiu Liang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanhui Cen
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinrong Li
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyan Wang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Huiying Lv
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Qingying Zhang
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Honglin Chen
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiang Lin
- Comprehensive Laboratory of Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
23
|
Huang Y, Yu XY, Luo P, Jiang FH, Cui LF, Shi Y, Song XR, Zhao Z. Three novel L-type lectins from obscure puffer Takifugu obscurus promote antimicrobial immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105046. [PMID: 37619908 DOI: 10.1016/j.dci.2023.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
L-type lectins (LTLs) have leguminous lectin domains that bind to high-mannose-type oligosaccharides. LTLs are involved in glycoprotein secretory pathways and associated with many immune responses. In the present research, three LTL homologs from obscure puffer Takifugu obscurus, designated as ToVIP36-1, ToVIP36-2, and ToVIP36-3, were first cloned and identified. The open reading frames of ToVIP36-1, ToVIP36-2, and ToVIP36-3 were 1068, 1002, and 1086 bp in length, respectively, and encode polypeptides with 355, 333, and 361 amino acids, respectively. Key conserved residues and functional domains, including lectin_leg-like domain (LTLD), transmembrane region, and C-terminal trafficking signal KRFY, were identified in all ToVIP36s. Quantitative real-time PCR analysis showed that the three ToVIP36s were widely expressed in six examined tissues and had relatively high expression levels in the liver and intestine. The expression levels of ToVIP36s were remarkably altered in the liver and kidney after induction by Vibrio harveyi and Staphylococcus aureus. Subsequently, the recombinant LTLDs of ToVIP36s (rToVIP36-LTLDs) were prepared by prokaryotic expression. Three rToVIP36-LTLD proteins agglutinated with S. aureus, V. harveyi, Vibrio parahaemolyticus, and Aeromonas hydrophila in a calcium-dependent manner. In the absence of calcium, rToVIP36-LTLD proteins bound to the bacteria by binding to lipopolysaccharides, peptidoglycans, d-mannose, and d-galactose and inhibited the growth of S. aureus and V. harveyi. Our results indicated that ToVIP36s function as pattern-recognition receptors in T. obscurus immunity, providing insights into the role of LTLs in the antibacterial immunity of fishes.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xin-Yue Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
| | - Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
24
|
Sahoo S, Badhe MR, Paul A, Sahoo PK, Suryawanshi AR, Panda D, Pillai BR, Patnaik BB, Mohanty J. Characterization of a Lipopolysaccharide- and Beta-1,3-Glucan Binding Protein (LGBP) from the Hepatopancreas of Freshwater Prawn, Macrobrachium rosenbergii, Possessing Lectin-Like Activity. Probiotics Antimicrob Proteins 2023; 15:1596-1607. [PMID: 36593373 DOI: 10.1007/s12602-022-10021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 01/04/2023]
Abstract
The study focuses on the isolation, characterization, and expression analysis of a lectin from the hepatopancreas of Macrobrachium rosenbergii. The protein was isolated by affinity chromatography on a melibiose-agarose column. The molecular weight of the native protein was found to be ~120 kDa which consists of a single polypeptide of ~39.5 kDa. On mass spectrometric analysis, the protein was identified as lipopolysaccharide- and beta-1,3-glucan binding protein (LGBP). LGBP showed hemagglutination with rabbit RBC like a lectin and its carbohydrate-binding specificity was determined by the hemagglutination inhibition test. The protein also showed antibacterial activity against two Gram-negative bacteria Vibrio harveyi and Aeromonas sobria, and one Gram positive bacteria Bacillus cereus in the disc diffusion test. Rabbit antiserum was raised against the purified LGBP and used to develop a sandwich ELISA system for quantitation of the protein in hepatopancreas and serum samples of M. rosenbergii. The expression of the LGBP transcripts in muscle, hepatopancreas, and gill tissues from M. rosenbergii juveniles at 72 h post-challenge of V. harveyi was not modulated as noticed in qPCR analysis. However, significant increases in the concentrations of LGBP protein in hepatopancreas (5.23 ± 0.45 against 3.43 ± 0.43 mg/g tissue in control) and serum (1.08 ± 0.14 against 0.61 ± 0.08 µg/ml in control) were observed in the challenged group of prawns in ELISA suggesting its putative role against bacterial infections. The study for the first time characterized the native LGBP of M. rosenbergii showing a multifunctional role in immunity.
Collapse
Affiliation(s)
- Sonalina Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Mohan R Badhe
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Anirban Paul
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | | | - Debabrata Panda
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bindu R Pillai
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India
| | - Bharat Bhusan Patnaik
- P.G. Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, India
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungcheongnam-do, 31538, Korea
| | - Jyotirmaya Mohanty
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002, India.
| |
Collapse
|
25
|
Dai L, Chen P, Hou D, Wang Y, Zhou Y, Sun C. Pathogenicity and transcriptomic exploration of Vibrio fortis in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109097. [PMID: 37751788 DOI: 10.1016/j.fsi.2023.109097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In this study, a strain (recorded as Y6) was isolated from the biofloc pool, its DNA was extracted for 16S rDNA sequencing and compared in the NCBI database, and it was identified as Vibrio fortis. The V. fortis was activated, cultured, and artificially injected into Penaeus monodon to observe the symptoms and calculate the semi-lethal concentration (LC50). It was found that the symptoms of the red leg, an empty stomach, and enlarged hepatopancreas of P. monodon after infection with V. fortis. The LC50 was 4.00 × 107, 2.24 × 107, 1.82 × 107, 1.41 × 107, 7.52 × 106 and 3.31 × 106 CFU/mL at 16, 24, 32, 48, 128, and 144 hpi, respectively. The K-B disk method was used to detect the sensitivity of V. fortis to various antibiotic drugs. V. fortis resisted Ampicillin, Piperacillin, Cefazolin, Cephalothin and Cefoxitin. Highly sensitive to Polymyxin B, Tobramycin, Gentamicin, Cefepime, Cefoperazone and Streptomycin. To explore the molecular response mechanism of V. fortis infection in P. monodon, the hepatopancreas of P. monodon infected with V. fortis at 24 and 48 hpi by transcriptome sequencing, and a total of 347 DEGs were obtained (214 up-regulated DEGs and 133 down-regulated DEGs). In the KEGG pathway enrichment analysis of DEGs, significant changes were found in genes and signaling pathways related to immune system and substance metabolism, including NOD-like receptor signaling pathways, Toll and Imd signaling pathways, C-type lectin receptor signaling pathways and pyruvate metabolism. This study initially revealed the immune response of P. monodon to V. fortis infection from the molecular level and provided a reference for further understanding of the study and control of the vibriosis of shrimp.
Collapse
Affiliation(s)
- Linxin Dai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Peixun Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yue Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yinhuan Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China.
| |
Collapse
|
26
|
Yang QF, Li S, Feng GP, Qin C, Min XW, Fang WH, Wu Y, Zhou J, Li XC. A novel C-type lectin (SpccCTL) suppresses MCRV replication by binding viral protein and regulating antiviral peptides in Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109143. [PMID: 37827249 DOI: 10.1016/j.fsi.2023.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Pattern recognition receptors (PRRs) play a crucial role in the recognition and activation of innate immune responses against invading microorganisms. This study characterizes a novel C-type lectin (CTL), SpccCTL. The cDNA sequence of SpccCTL has a full length of 1744 bp encoding a 338-amino acid protein. The predicted protein contains a signal peptide, a coiled-coil (CC) domain, and a CLECT domain. It shares more than 50 % similarity with a few CTLs with a CC domain in crustaceans. SpccCTL is highly expressed in gills and hemocytes and upregulated after MCRV challenge, suggesting that it may be involved in antiviral immunity. Recombinant SpccCTL (rSpccCTL) as well as two capsid proteins of MCRV (VP11 and VP12) were prepared. Pre-incubating MCRV virions with rSpccCTL significantly suppresses the proliferation of MCRV in mud crabs, compared with the control (treatment with GST protein), and the survival rate of mud crabs is also significantly decreased. Knockdown of SpccCTL significantly facilitates the proliferation of MCRV in mud crabs. These results reveal that SpccCTL plays an important role in antiviral immune response. GST pull-down assay result shows that rSpccCTL interacts specifically with VP11, but not to VP12. This result is further confirmed by a Co-IP assay. In addition, we found that silencing SpccCTL significantly inhibits the expression of four antimicrobial peptides (AMPs). Considering that these AMPs are members of anti-lipopolysaccharide factor family with potential antiviral activity, they are likely involved in immune defense against MCRV. Taken together, these findings clearly demonstrate that SpccCTL can recognize MCRV by binding viral capsid protein VP11 and regulate the expression of certain AMPs, suggesting that SpccCTL may function as a potential PRR playing an essential role in anti-MCRV immunity of mud crab. This study provides new insights into the antiviral immunity of crustaceans and the multifunctional characteristics of CTLs.
Collapse
Affiliation(s)
- Qing-Feng Yang
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shouhu Li
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Guang-Peng Feng
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chuang Qin
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiu-Wen Min
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Wen-Hong Fang
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yue Wu
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jin Zhou
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| | - Xin-Cang Li
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
27
|
Mengal K, Kor G, Siino V, Buřič M, Kozák P, Levander F, Niksirat H. Quantification of proteomic profile changes in the hemolymph of crayfish during in vitro coagulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104760. [PMID: 37331675 DOI: 10.1016/j.dci.2023.104760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Hemolymph is the circulatory fluid that fills the body cavity of crustaceans, analogous to blood in vertebrates. Hemolymph coagulation, similar to blood clotting in vertebrates, plays a crucial role in wound healing and innate immune responses. Despite extensive studies on the clotting process in crustaceans, no comparative quantitative analysis of the protein composition of non-clotted and clotted hemolymph in any decapod has been reported. In this study, we used label-free protein quantification with high-resolution mass spectrometry to identify the proteomic profile of hemolymph in crayfish and quantify significant changes in protein abundances between non-clotted and clotted hemolymph. Our analysis identified a total of two-hundred and nineteen proteins in both hemolymph groups. Furthermore, we discussed the potential functions of the top most high and low-abundant proteins in hemolymph proteomic profile. The quantity of most of the proteins was not significantly changed during coagulation between non-clotted and clotted hemolymph, which may indicate that clotting proteins are likely pre-synthesized, allowing for a swift coagulation response to injury. Four proteins still showed abundance differences (p < 0.05, fold change>2), including C-type lectin domain-containing proteins, Laminin A chain, Tropomyosin, and Reverse transcriptase domain-containing proteins. While the first three proteins were down-regulated, the last one was up-regulated. The down-regulation of structural and cytoskeletal proteins may affect the process of hemocyte degranulation needed for coagulation, while the up-regulation of an immune-related protein might be attributed to the phagocytosis ability of viable hemocytes during coagulation.
Collapse
Affiliation(s)
- Kifayatullah Mengal
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Golara Kor
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Valentina Siino
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Fredrik Levander
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden; National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, 223 87, Sweden
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
28
|
Gu Y, Zhu L, Wang X, Li H, Hou L, Kong X. Research progress of pattern recognition receptors in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109028. [PMID: 37633345 DOI: 10.1016/j.fsi.2023.109028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Though Procambarus clarkii (red swamp crayfish) is a lower invertebrate, it has nonetheless developed a complex innate immune system. The crayfish farming industry has suffered considerable economic losses in recent years as a consequence of bacterial and viral diseases. Hence, perhaps the most effective ways to prevent microbial infections in P. clarkii are to examine and elucidate its innate immunity. The first step in the immune response is to recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). PRRs are expressed mainly on immune cell surfaces and recognize at least one PAMP. Thence, downstream immune responses are activated and pathogens are phagocytosed. To date, the PRRs identified in P. clarkii include Toll-like receptors (TLRs), lectins, fibrinogen-related proteins (FREPs), and β-1,3-glucan-binding proteins (BGRPs). The present review addresses recent progress in research on PRRs and aims to provide guidance for improving immunity and preventing and treating infectious diseases in P. clarkii.
Collapse
Affiliation(s)
- Yanlong Gu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Hao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
29
|
Luo T, Ren X, Fan L, Guo C, Zhang B, Bi J, Guan S, Ning M. Identification of two galectin-4 proteins (PcGal4-L and PcGal4-L-CRD) and their function in AMP expression in Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109040. [PMID: 37648118 DOI: 10.1016/j.fsi.2023.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Galectins, a family of lectins that bind to β-galactoside, possess conserved carbohydrate recognition domains (CRDs) and play a crucial role in recognizing and eliminating pathogens in invertebrates. Two galectin-4 genes (PcGal4) isoforms, named PcGal4-L and PcGal4-L-CRD, were cloned from the cDNA library of Procambarus clarkia in our study. PcGal4-L contains an open reading frame (ORF, 1089 bp), which encodes a protein consisting of 362 amino acids including a single CRD and six low complexity regions. The full-length cDNA of PcGal4-L-CRD contains a 483 bp ORF that encodes a protein of 160 amino acids, with a single CRD and a low-complexity region. The difference between the two PcGal4 isoforms is that PcGal4-L has 202 additional amino acids after the CRD compared to the PcGal4-L-CRD. These two isoforms are grouped together with other galectins from crustaceans through phylogenetic analysis. Further study revealed that total PcGal4 (including PcGal4-L and PcGal4-L-CRD) was primarily expressed in the muscle, gills and intestine. The mRNA levels of total PcGal4 in gills and hemocytes were significantly induced after challenge with Aeromonas hydrophila. Both recombinant PcGal4-L and its spliced isoform, PcGal4-L-CRD, could directly bind to lipopolysaccharides, peptidoglycan and five tested microorganisms, inducing a wide spectrum of microbial agglutination. The spliced isoform PcGal4-L-CRD showed a stronger binding ability than PcGal4-L. In addition, when the PcGal4 was knockdown, transcriptions of seven antimicrobial peptides (AMPs) genes (ALF5, ALF6, ALF8, CRU1, CRU2, CRU3 and CRU4) in gills and seven AMPs genes (ALF5, ALF6, ALF8, ALF9, CRU1, CRU3 and CRU4) in hemocytes were significantly decreased. Meanwhile, the survival rate of P. clarkii decreased in the PcGal4-dsRNA group. In summary, these results indicate that PcGal4 can mediate the innate immunity in P. clarkii by bacterial recognition and agglutination, as well as regulating AMP expression, thus recognition and understanding of the functions of galectin in crustaceans in immune resistance.
Collapse
Affiliation(s)
- Tingyi Luo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xianfeng Ren
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lixia Fan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changying Guo
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Bingchun Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shuai Guan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
30
|
Kim MJ, Kim SH, Kim JO, Lee TK, Jang IK, Choi TJ. Efficacy of White Spot Syndrome Virus Protein VP28-Expressing Chlorella vulgaris as an Oral Vaccine for Shrimp. Viruses 2023; 15:2010. [PMID: 37896787 PMCID: PMC10610983 DOI: 10.3390/v15102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The white spot syndrome virus (WSSV) is the causative agent of white spot disease, which kills shrimp within a few days of infection. Although WSSV has a mortality rate of almost 100% and poses a serious threat to the shrimp farming industry, strategies for its prevention and treatment are extremely limited. In this study, we examined the efficacy of VP28, a recombinant WSSV protein expressed in Chlorella vulgaris (C. vulgaris), as an oral shrimp vaccine. When compared with the control group, in which WSSV had a cumulative mortality of 100%, shrimp treated with 5% VP28-expressing C. vulgaris in their feed only had a 20% cumulative mortality rate 12 days after the WSSV challenge. When compared with the nonvaccinated group, the transcription of anti-lipopolysaccharide factor, C-type lectin, and prophenoloxidase genes, which are involved in shrimp defense against WSSV infection, was upregulated 29.6 fold, 15.4 fold, and 11.5 fold, respectively. These findings highlight C. vulgaris as a potential host for industrial shrimp vaccine production.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Su-Hyun Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Jong-Oh Kim
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| | - Taek-Kyun Lee
- South Sea Environment Research Division, Korea Institute of Ocean Science & Technology, Geoje-si 53201, Republic of Korea;
| | - In-Kwon Jang
- Junggyeom Co., Ltd., Goyang-si 10223, Republic of Korea;
| | - Tae-Jin Choi
- Department of Microbiology, School of Marine and Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; (M.-J.K.); (S.-H.K.); (J.-O.K.)
| |
Collapse
|
31
|
Feng J, Huang Y, Huang M, Luo J, Que L, Yang S, Jian J. A novel perlucin-like protein (PLP) protects Litopenaeus vannamei against Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108932. [PMID: 37414305 DOI: 10.1016/j.fsi.2023.108932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
C-type lectins (CTLs), as pattern recognition receptors (PRRs), play an important role in the innate immunity of Litopenaeus vannamei. In this study, a novel CTL, named perlucin-like protein (PLP), was identified from L. vannamei, which shared homology sequences of PLP from Penaeus monodon. PLP from L. vannamei was expressed in the hepatopancreas, eyestalk, muscle and brain and could be activated in the tissues (hepatopancreas, muscle, gill and intestine) after infection with the pathogen Vibrio harveyi. Bacteria (Vibrio alginolyticus, V. parahaemolyticus, V. harveyi, Streptococcus agalactiae and Bacillus subtilis) could be bound and agglutinated by the PLP recombinant protein in a Ca2+-dependent manner. Moreover, PLP could stabilise the expression of the immune-related genes (ALF, SOD, HSP70, Toll4 and IMD) and apoptosis gene (Caspase2). The RNAi of PLP could remarkably affect the expression of antioxidant gene, antimicrobial peptide genes, other CTLs, apoptosis genes, Toll signaling pathways, and IMD signaling pathways. Moreover, PLP reduced the bacterial load in the hepatopancreas. These results suggested that PLP was involved in the innate immune response against V. harveyi infection by recognising bacterial pathogens and activating the expression of immune-related and apoptosis genes.
Collapse
Affiliation(s)
- Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Meiling Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liwen Que
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
32
|
Bi J, Wang Y, Gao R, Liu P, Jiang Y, Gao L, Li B, Song Q, Ning M. Functional Analysis of a CTL-X-Type Lectin CTL16 in Development and Innate Immunity of Tribolium castaneum. Int J Mol Sci 2023; 24:10700. [PMID: 37445878 DOI: 10.3390/ijms241310700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
C-type lectins (CTLs) are a class of proteins containing carbohydrate recognition domains (CRDs), which are characteristic modules that recognize various glycoconjugates and function primarily in immunity. CTLs have been reported to affect growth and development and positively regulate innate immunity in Tribolium castaneum. However, the regulatory mechanisms of TcCTL16 proteins are still unclear. Here, spatiotemporal analyses displayed that TcCTL16 was highly expressed in late pupae and early adults. TcCTL16 RNA interference in early larvae shortened their body length and narrowed their body width, leading to the death of 98% of the larvae in the pupal stage. Further analysis found that the expression level of muscle-regulation-related genes, including cut, vestigial, erect wing, apterous, and spalt major, and muscle-composition-related genes, including Myosin heavy chain and Myosin light chain, were obviously down-regulated after TcCTL16 silencing in T. castaneum. In addition, the transcription of TcCTL16 was mainly distributed in the hemolymph. TcCTL16 was significantly upregulated after challenges with lipopolysaccharides, peptidoglycans, Escherichia coli, and Staphylococcus aureus. Recombinant CRDs of TcCTL16 bind directly to the tested bacteria (except Bacillus subtilis); they also induce extensive bacterial agglutination in the presence of Ca2+. On the contrary, after TcCTL16 silencing in the late larval stage, T. castaneum were able to develop normally. Moreover, the transcript levels of seven antimicrobial peptide genes (attacin2, defensins1, defensins2, coleoptericin1, coleoptericin2, cecropins2, and cecropins3) and one transcription factor gene (relish) were significantly increased under E. coli challenge and led to an increased survival rate of T. castaneum when infected with S. aureus or E. coli, suggesting that TcCTL16 deficiency could be compensated for by increasing AMP expression via the IMD pathways in T. castaneum. In conclusion, this study found that TcCTL16 could be involved in developmental regulation in early larvae and compensate for the loss of CTL function by regulating the expression of AMPs in late larvae, thus laying a solid foundation for further studies on T. castaneum CTLs.
Collapse
Affiliation(s)
- Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yutao Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rui Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pingxiang Liu
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuying Jiang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
33
|
Bi K, Du J, Chen J, Wang H, Zhang K, Wang Y, Hou L, Meng Q. Screening and functional analysis of three Spiroplasma eriocheiris glycosylated protein interactions with Macrobrachium nipponense C-type lectins. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108810. [PMID: 37169109 DOI: 10.1016/j.fsi.2023.108810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
N-glycosylation, one of the main protein posttranslational modifications (PTMs), plays an important role in the pathogenic process of pathogens through binding and invasion of host cells or regulating the internal environment of host cells to benefit their survival. However, N-glycosylation has remained mostly unexplored in Spiroplasma eriocheiris, a novel type of pathogen which has serious adverse effects on aquaculture. In most cases, N-glycoproteins can be detected and analyzed by lectins dependent on sugar recognition domains. In this study, three Macrobrachium nipponense C-type lectins, namely, MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3, were used to screen S. eriocheiris glycosylated proteins. First, qRT-PCR results showed that the expression levels of the three kinds of lectins were all significantly up-regulated in prawn hearts when the host was against S. eriocheiris infection. A bacterial binding assay showed that purified recombinant MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3 could directly bind to S. eriocheiris in vitro. Second, three S. eriocheiris glycosylated proteins, ATP synthase subunit beta (ATP beta), molecular chaperone Dnak (Dnak) and fructose bisphosphate aldolase (FBPA), were screened and identified using the three kinds of full-length C-type lectins. Far-Western blot and coimmunoprecipitation (CO-IP) further demonstrated that there were interactions between the three lectins with ATP beta, Dnak and FBPA. Furthermore, antibody neutralization assay results showed that pretreatment of S. eriocheiris with ATP beta, Dnak and FBPA antibodies could significantly block this pathogen infection. All the above studies showed that the glycosylated protein played a vital role in the process of S. eriocheiris infection.
Collapse
Affiliation(s)
- Keran Bi
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Jie Du
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Jun Chen
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Huicong Wang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Kun Zhang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Yuheng Wang
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, 212400, China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China.
| |
Collapse
|
34
|
Yang B, Li Q, Zhang M, Lin S, Shen X, Du Z. Molecular cloning and functional characterization of peroxiredoxin 4 (prx 4) in freshwater crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108781. [PMID: 37127188 DOI: 10.1016/j.fsi.2023.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Peroxiredoxin (Prx), which is a newly discovered member of the antioxidant protein family, performs important biological functions in intracellular signal transduction. In the present study, a peroxiredoxin 4 gene was cloned from crayfish for the first time and named Pc-prx 4. According to the amino acid sequence signature, Pc-Prx 4 was identified as the typical 2-Cys Prx molecule, which possessed two conserved cysteines (Cys98 and Cys219). Time-course expression patterns post V. harveyi infection revealed that Pc-prx 4 was likely related to crayfish innate immune defense responses. In particular, the highest fold upregulation of the Pc-prx 4 mRNA transcript reached approximately 170 post V. harveyi infection in the crayfish hepatopancreas. The results of the mixed functional oxidase assay showed that rPc-Prx 4△ could resist the damaging effect of reactive oxygen species generated from the thiol/Fe3+/O2- reaction system to some extent. In addition, the results of the RNAi assay revealed that the crayfish survival rate was obviously increased post injection of V. harveyi when Pc-prx 4 was knocked down. Further study revealed that both hemolymph melanization and PO activity were strengthened to different degrees in the RNAi assay. Therefore, we speculated that the increase in the crayfish survival rate was likely due to the increase in hemolymph melanization. The obviously reinforced hemolymph melanization was directly caused by the upregulation of hemolymph PO activity, which was induced by the knockdown of Pc-prx 4. However, further studies are still indispensable for illuminating the molecular mechanism of Pc-prx 4 in the crayfish innate immune defense system.
Collapse
Affiliation(s)
- Bingbing Yang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Qianqian Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Mingda Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Sihan Lin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Xiuli Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Zhiqiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China.
| |
Collapse
|
35
|
Luo J, Chen Y, Huang Y, Feng J, Yuan Y, Jian J, Cai S, Yang S. A novel C-type lectin for Litopenaeus vannamei involved in the innate immune response against Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108621. [PMID: 36803777 DOI: 10.1016/j.fsi.2023.108621] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
C-type lectins (CTLs), as a member of pattern recognition receptors, play a vital role in the innate immune response of invertebrates to eliminate micro-invaders. In this study, a novel CTL of Litopenaeus vannamei, namely, LvCTL7, was successfully cloned, with an open reading frame of 501 bp and a capability to encode 166 amino acids. Blast analysis showed that the amino acid sequence similarity between LvCTL7 and MjCTL7 (Marsupenaeus japonicus) was 57.14%. LvCTL7 was mainly expressed in hepatopancreas, muscle, gill and eyestalk. Vibrio harveyi can significantly affect LvCTL7 expression level in hepatopancreases, gills, intestines and muscles (p < 0.05). LvCTL7 recombinant protein can bind to Gram-positive bacteria (Bacillus subtilis) and Gram-negative bacteria (Vibrio parahaemolyticus and V. harveyi). It can cause the agglutination of V. alginolyticus and V. harveyi, but it had no effect on Streptococcus agalactiae and B. subtilis. The expression levels of SOD, CAT, HSP 70, Toll 2, IMD and ALF genes in the challenge group added with LvCTL7 protein were more stable than those in the direct challenge group (p < 0.05). Moreover, knockdown of LvCTL7 by double-stranded RNA interference downregulated the expression levels of genes (ALF, IMD and LvCTL5) that protect against bacterial infection (p < 0.05). These results indicated that LvCTL7 had microbial agglutination and immunoregulatory activity, and it was involved in the innate immune response against Vibrio infection in L. vannamei.
Collapse
Affiliation(s)
- Junliang Luo
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yanghui Chen
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Yunhao Yuan
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Shiping Yang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, China.
| |
Collapse
|
36
|
Wang J, Guo XL, Chen HY, Xiao LX, Yang GW, Yang HT. A novel l-rhamnose-binding lectin participates in defending against bacterial infection in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108553. [PMID: 36693487 DOI: 10.1016/j.fsi.2023.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
l-rhamnose-binding lectin (RBL), which is a class of animal lectins independent of Ca2+, can specifically bind l-rhamnose or d-galactose. Although several lectins in zebrafish have been reported, their functional mechanisms have not been fully uncovered. In this study, we discovered a novel l-rhamnose binding lectin (DrRBL) and studied its innate immune function. The DrRBL protein contains only one carbohydrate-recognition domain (CRD), which includes two strictly conserved motifs, "YGR" and "DPC". DrRBL was detected in all tested tissues and was present at high levels in the spleen, hepatopancreas and skin. After Aeromonas hydrophila challenge, the DrRBL mRNA level was significantly upregulated. Additionally, DrRBL was secreted into the extracellular matrix. Recombinant DrRBL (rDrRBL) could significantly inhibit the growth of gram-positive/negative bacteria, bind to several bacteria and cause obvious agglutination. The rDrRBL protein could combine with polysaccharides, such as PGN and LPS, rather than LTA. A more detailed study showed that rDrRBL could combine with monosaccharides, such as mannose, rhamnose and glucose, which are important components of PGN and LPS. However, rDrRBL could not bind to ribitol, which is an important component of LTA. The DrRBL deletion mutants, DrRBLΔ144-150 and DrRBLΔ198-200, were also constructed. DrRBLΔ144-150 ("ANYGRTD" deficient) showed weak bacterial inhibiting ability. However, DrRBLΔ198-200 ("DPC" deficient) showed weak agglutination ability. These results suggest that the "DPC" domain is important for agglutination. The conserved domain "ANYGRTD" is essential for inhibiting bacterial growth.
Collapse
Affiliation(s)
- Jing Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xin-Lu Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hong-Ye Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin-Xi Xiao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
37
|
Kumar S, Verma AK, Singh SP, Awasthi A. Immunostimulants for shrimp aquaculture: paving pathway towards shrimp sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25325-25343. [PMID: 35025041 PMCID: PMC8755978 DOI: 10.1007/s11356-021-18433-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 05/03/2023]
Abstract
At present, food security is a matter of debate of global magnitude and fulfilling the feeding requirement of > 8 billion human populations by 2030 is one of the major concerns of the globe. Aquaculture plays a significant role to meet the global food requirement. Shrimp species such as Litopenaeus vannamei, Penaeus monodon, and Macrobrachium rosenbergii are among the most popular food commodities worldwide. As per Global Outlook for Aquaculture Leadership survey, disease outbreaks have been a matter of concern from the past many decades regarding the shrimp aquaculture production. Among the past disease outbreaks, white spot disease caused by the white spot syndrome virus is considered to be one of the most devastating ones that caused colossal losses to the shrimp industry. Since the virus is highly contagious, it spreads gregariously among the shrimp population; hence, practicing proper sanitization practices is crucial in order to have disease-free shrimps. Additionally, in order to control the disease, antibiotics were used that further leads to bioaccumulation and biomagnification of antibiotics in several food webs. The bioaccumulation of the toxic residues in the food webs further adversely affected human too. Recently, immunostimulants/antivirals were used as an alternative to antibiotics. They were found to enhance the immune system of shrimps in eco-friendly manner. In context to this, the present paper presents a critical review on the immunostimulants available from plants, animals, and chemicals against WSSV in shrimps. Looking into this scenario, maintaining proper sanitation procedures in conjunction with the employment of immunostimulants may be a viable approach for preserving shrimp aquaculture across the globe.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Zoology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India
| | - Arunima Kumar Verma
- Department of Zoology, Government Autonomous P.G. College, Madhya Pradesh, Satna, India
| | - Shivesh Pratap Singh
- Department of Zoology, Government Autonomous P.G. College, Madhya Pradesh, Satna, India
| | - Abhishek Awasthi
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Solan, Himachal Pradesh, India.
| |
Collapse
|
38
|
Chen YC, Qiu W, Zhang W, Zhang J, Chen R, Chen F, Wang KJ. A Novel Antimicrobial Peptide Sp-LECin with Broad-Spectrum Antimicrobial Activity and Anti- Pseudomonas aeruginosa Infection in Zebrafish. Int J Mol Sci 2022; 24:ijms24010267. [PMID: 36613722 PMCID: PMC9820466 DOI: 10.3390/ijms24010267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
New antimicrobial agents are urgently needed to address the increasing emergence and dissemination of multidrug-resistant bacteria. In the study, a chemically synthesized truncated peptide containing 22-amino acids derived from a C-type lectin homolog SpCTL6 of Scylla paramamosain was screened and found to exhibit broad-spectrum antimicrobial activity, indicating that it is an antimicrobial peptide (AMP), named Sp-LECin. Sp-LECin possessed the basic characteristics of most cationic AMPs, such as positive charge (+4) and a relatively high hydrophobicity (45%). After treatment with Sp-LECin, the disruption of microbial membrane integrity and even leakage of cellular contents was observed by scanning electron microscopy (SEM). In addition, Sp-LECin could bind lipopolysaccharide (LPS), increase the outer and inner membrane permeability and induce reactive oxygen species (ROS) production, ultimately leading to the death of Pseudomonas aeruginosa. Furthermore, Sp-LECin exhibited potent anti-biofilm activity against P. aeruginosa during both biofilm formation and maturation. Notably, Sp-LECin had no obvious cytotoxicity and could greatly improve the survival of P. aeruginosa-infected zebrafish, by approximately 40% over the control group after 72 h of treatment. This study indicated that Sp-LECin is a promising antibacterial agent with the potential to be used against devastating global pathogen infections such as P. aeruginosa.
Collapse
Affiliation(s)
- Yan-Chao Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Wanlei Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weibin Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jingrong Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Roushi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| |
Collapse
|
39
|
Protective Effects of Combined Utilization of Quercetin and Florfenicol on Acute Hepatopancreatic Necrosis Syndrome Infected Litopenaeus vannamei. Antibiotics (Basel) 2022; 11:antibiotics11121784. [PMID: 36551441 PMCID: PMC9774288 DOI: 10.3390/antibiotics11121784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
This study aimed to determine the immunity, survival rate, and disease resistance of Litopenaeus vannamei treated using quercetin and florfenicol alone or in combination, after infection with acute hepatopancreatic necrosis syndrome caused by Vibrio parahaemolyticus (VPAHPND). After infection with VPAHPND, different types of feed were given to the shrimp for 5 days, including a control diet (drug-free), florfenicol only diet (15 mg/kg), quercetin only diet (400 mg/kg), a low-dose florfenicol/quercetin combined diet (200 mg/kg quercetin + 7.0 mg/kg florfenicol), a moderate-dose florfenicol/quercetin combined diet (400 mg/kg quercetin + 15 mg/kg florfenicol), and a high-dose florfenicol/quercetin combined diet (800 mg/kg quercetin + 30 mg/kg florfenicol). The cumulative mortality of shrimp was significantly reduced in the drug combination groups compared with either drug used alone (p < 0.05). The density of Vibrio was significantly lower and the immune parameters were significantly increased in the drug combination groups compared with either drug used alone (p < 0.05). Moreover, in the drug combination groups, the hepatopancreas tubules showed better integrity and structure compared with those when either drug was used alone. Therefore, compared with single drug treatment, the florfenicol and quercetin combination enhanced disease resistance, survival, and immune activity of VPAHPND-infected shrimp. When the combination treatment is used, the dosage of florfenicol can be reduced and a better therapeutic effect is obtained.
Collapse
|
40
|
Qin Y, Luo Z, Zhao K, Nan X, Guo Y, Li W, Wang Q. A new SVWC protein functions as a pattern recognition protein in antibacterial responses in Chinese mitten crab (Eriocheirsinensis). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1125-1135. [PMID: 36402266 DOI: 10.1016/j.fsi.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Because invertebrates lack acquired immunity, they rely primarily on the innate immune system to defend themselves against viral and bacterial infections. SVWC, also called Vago, is a class of small-molecule proteins characterized by a single von Willebrand factor C-domain and appears to be restricted to arthropods. It has been reported that SVWC is involved in antiviral immunity in invertebrates, but whether it is involved in antimicrobial immunity and the mechanism of its involvement in antimicrobial immunity remains unclear. In this study, we identified a novel SVWC gene in Eriocheir sinensis and named it EsSVWC. EsSVWC was found to respond positively to bacterial stimulation and to regulate the expression of related antimicrobial peptides (AMPs). The EsSVWC protein recognized and bound to a variety of pathogen-associated molecular patterns (PAMPs) but did not exhibit direct bactericidal effects. Thus, the EsSVWC protein in crabs helps resist bacterial infection and improve survival rates. In summary, EsSVWC may regulate the innate immune system of crabs in response to microbial invasion in an indirect manner.
Collapse
Affiliation(s)
- Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhi Luo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Guo
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
41
|
Romo Quiñonez CR, Alvarez-Ruiz P, Mejía-Ruiz CH, Bogdanchikova N, Pestryakov A, Gamez-Jimenez C, Valenzuela-Quiñonez W, Montoya-Mejía M, Nava Pérez E. Chronic toxicity of shrimp feed added with silver nanoparticles (Argovit-4®) in Litopenaeus vannamei and immune response to white spot syndrome virus infection. PeerJ 2022; 10:e14231. [PMID: 36438583 PMCID: PMC9695493 DOI: 10.7717/peerj.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the application of silver nanoparticles (AgNPs) as antibacterial compounds has been widely used in human and veterinary medicine. In this work, we investigated the effects of AgNPs (Argovit-4®) as feed additives (feed-AgNPs) on shrimp (Litopenaeus vannamei) using three different methods: 1) chronic toxicity after 28 days of feeding, 2) Effects against white spot syndrome virus (WSSV) challenged by oral route, and 3) transcriptional responses of immune-related genes (PAP, ProPO, CTL-3, Crustin, PEN3, and PEN4) following WSSV infection. The results showed that the feed-AgNPs did not interfere with the growth and survival of shrimp. Also, mild lesions in the hepatopancreas were recorded, proportional to the frequency of the feed-AgNP supply. Challenge test versus WSSV showed that feeding every 7 days with feed-AgNPs reduced mortality, reaching a survival rate of 53%, compared to the survival rates observed in groups fed every 4 days, daily and control groups of feed-AgNPs for the 30%, 10%, and 7% groups, respectively. Feed-AgNPs negatively regulated the expression of PAP, ProPO, and Crustin genes after 28 days of treatment and altered the transcriptional responses of PAP, ProPO, CTL-3, and Crustin after WSSV exposure. The results showed that weekly feeding-AgNPs could partially prevent WSSV infection in shrimp culture. However, whether or not transcriptional responses against pathogens are advantageous remains to be elucidated.
Collapse
Affiliation(s)
- Carlos R. Romo Quiñonez
- Laboratorio de Biotecnología de Organismos Marinos, Centro de investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Píndaro Alvarez-Ruiz
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | - Claudio H. Mejía-Ruiz
- Laboratorio de Biotecnología de Organismos Marinos, Centro de investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Nina Bogdanchikova
- Fisicoquímica de nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Carina Gamez-Jimenez
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | | | - Magnolia Montoya-Mejía
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | - Eusebio Nava Pérez
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| |
Collapse
|
42
|
Peritrophin-like Genes Are Associated with Delousing Drug Response and Sensitivity in the Sea Louse Caligus rogercresseyi. Int J Mol Sci 2022; 23:ijms232113341. [DOI: 10.3390/ijms232113341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Caligus rogercresseyi is the main ectoparasite that affects the salmon industry in Chile. The mechanisms used by the parasite to support its life strategy are of great interest for developing control strategies. Due to the critical role of insect peritrophins in host–parasite interactions and response to pest control drugs, this study aimed to identify and characterize the peritrophin-like genes present in C. rogercresseyi. Moreover, the expression of peritrophin-like genes was evaluated on parasites exposed to delousing drugs such as pyrethroids and azamethiphos. Peritrophin genes were identified by homology analysis among the sea louse transcriptome database and arthropods peritrophin-protein database obtained from GenBank and UniProt. Moreover, the gene loci in the parasite genome were located. Furthermore, peritrophin gene expression levels were evaluated by RNA-Seq analysis in sea louse developmental stages and sea lice exposed to delousing drugs deltamethrin, cypermethrin, and azamethiphos. Seven putative peritrophin-like genes were identified in C. rogercresseyi with high homology with other crustacean peritrophins. Differences in the presence of signal peptides, the number of chitin-binding domains, and the position of conserved cysteines were found. In addition, seven peritrophin-like gene sequences were identified in the C. rogercresseyi genome. Gene expression analysis revealed a stage-dependent expression profile. Notably, differential regulation of peritrophin genes in resistant and susceptible populations to delousing drugs was found. These data are the first report and characterization of peritrophin genes in the sea louse C. rogercresseyi, representing valuable knowledge to understand sea louse biology. Moreover, this study provides evidence for a deeper understanding of the molecular basis of C. rogercresseyi response to delousing drugs.
Collapse
|
43
|
Dai X, Sun M, Nie X, Zhao Y, Xu H, Han Z, Gao T, Huang X, Ren Q. A positive feedback loop between two C-type lectins originated from gene duplication and relish promotes the expression of antimicrobial peptides in Procambarus clarkii. Front Immunol 2022; 13:1021121. [PMID: 36353630 PMCID: PMC9638144 DOI: 10.3389/fimmu.2022.1021121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Gene duplication (GD) leads to the expansion of gene families that contributes organisms adapting to stress or environment and dealing with the infection of various pathogens. C-type lectins (CTLs) in crustaceans undergo gene expansion and participate in various immune responses. However, the functions of different CTL produced by GD are not fully characterized. In the present study, two CTL genes (designated as PcLec-EPS and PcLec-QPS, respectively) were identified from Procambarus clarkii. PcLec-EPS and PcLec-QPS originate from GD and the main difference between them is exon 3. PcLec-EPS and PcLec-QPS respectively contains EPS and QPS motif in their carbohydrate recognition domain. The mRNA levels of PcLec-EPS and PcLec-QPS in hemocytes, gills, intestine and lymph underwent time-dependent enhancement after D-Mannose and D-Galactose challenge. Recombinant PcLec-EPS and PcLec-QPS could bind to carbohydrates and microbes, and agglutinate bacteria. The results of experiments on recombinant protein injection and RNA interference indicate that PcLec-EPS and PcLec-QPS can respectively strong recognize and bind D-Mannose and D-Galactose, activate the Relish transcriptional factor, and further upregulate the expression of different antimicrobial peptides (AMPs). In addition, these two CTLs and Relish could positively regulate the expression of each other, suggesting that there is a positive feedback loop between two CTLs and Relish that regulates the expression of AMPs. It may contribute to the expansion of the immune response for host quickly and efficiently eliminating pathogenic microorganisms. This study provides new knowledge for clear understanding the significance and function of different CTL generated by GD in immune defenses in crustacean.
Collapse
Affiliation(s)
- Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Ximei Nie
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Yuqi Zhao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Hao Xu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Zhengxiao Han
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Tianheng Gao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
- *Correspondence: Tianheng Gao, ; Xin Huang, ; Qian Ren,
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Tianheng Gao, ; Xin Huang, ; Qian Ren,
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Tianheng Gao, ; Xin Huang, ; Qian Ren,
| |
Collapse
|
44
|
Viana JT, Rocha RDS, Maggioni R. Structural and functional diversity of lectins associated with immunity in the marine shrimp Litopenaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 129:152-160. [PMID: 36058435 DOI: 10.1016/j.fsi.2022.08.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Lectins are important pattern recognition receptors (PRRs) and their immunological action is related to the recognition of glycans present in the pathogen cells surface. The lectins described for Litopenaeus vannamei are divided into C-type, L-type and galectin, which are mainly expressed in hepatopancreas and hemocytes. They are involved in several immune response pathways, such as phagocytosis, hemocytes recruitment, prophenoloxidase activation, and gene regulation. Although lectins have multiple immune functions, most experimental challenges focus only on WSSV and Vibrio sp. This article is a detailed review on the role of lectins in L. vannamei immune system, bringing together information on molecular structure, temporal and special expression and immune function, highlighting the wide participation of these molecules in shrimp innate immune system.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rafael Dos Santos Rocha
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| | - Rodrigo Maggioni
- Center for the Diagnosis of Diseases of Aquatic Organisms, Marine Sciences Institute, Federal University of Ceará, 60165-081, Fortaleza, CE, Brazil.
| |
Collapse
|
45
|
Zhang Y, Yao N, Zhang C, Sun X, Huang J, Zhao B, Li H. LncRNA-mRNA integrated profiling analysis in response to white spot syndrome virus in hepatopancreas in Penaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 129:251-262. [PMID: 36031038 DOI: 10.1016/j.fsi.2022.08.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Penaeus japonicas is an important shrimp species, which is exposed to stressors including a variety of epidemic diseases. To date, little is known about the mechanisms involved in the response to white spot syndrome virus (WSSV) mediated by long non-coding RNAs (lncRNAs). A total of 6544 putative lncRNAs were identified in the hepatopancreas in P. japonicas, which provides a useful lncRNA reference resource for use in future studies. In addition, a total of 444 differentially expressed mRNAs and 457 differentially expressed lncRNAs were identified at 6, 12, and 24 h after WSSV infection in the hepatopancreas of P. japonicas. Functional enrichment analysis showed that the differentially expressed mRNAs were enriched in terms related to immune response and viral infectivity such as defense response, aminopeptidase activity, whereas the differentially expressed lncRNA partner genes were enriched in ubiquitin-dependent protein catabolic process, lipoprotein metabolic process, and antigen processing and presentation. Moreover, several lncRNAs were induced by WSSV infection, indicating these lncRNAs might participate in regulating many immune processes referring to their partner genes. Co-expression analysis of the lncRNAs and their partner genes identified some high lncRNA-mRNA correlations. These results suggest that WSSV stimulates the immune response in the hepatopancreas potentially through an important coding and non-coding gene network, thereby providing valuable information regarding non-coding responses to WSSV in Penaeus species.
Collapse
Affiliation(s)
- Yaqun Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Na Yao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Chuantao Zhang
- Xiaying Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Weifang, Shandong, 261312, China
| | - Xiangshan Sun
- Xiaying Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Weifang, Shandong, 261312, China
| | - Jingxian Huang
- Xiaying Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Weifang, Shandong, 261312, China
| | - Bingran Zhao
- Xiaying Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Weifang, Shandong, 261312, China
| | - Hengde Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| |
Collapse
|
46
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 2022; 13:980021. [PMID: 36177045 PMCID: PMC9513592 DOI: 10.3389/fimmu.2022.980021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Hemocytes play central roles in shrimp immune system, whereas whose subclasses have not yet been completely defined. At present, the morphological classification of hemocytes is inadequate to classify the complete hemocyte repertoire and elucidate the functions and differentiation and maturation processes. Based on single-cell RNA sequencing (scRNA-seq) of hemocytes in healthy Litopenaeus vannamei, combined with RNA-FISH and flow cytometric sorting, we identified three hemocyte clusters including TGase+ cells, CTL+ cells and Crustin+ cells, and further determined their functional properties, potential differentiation trajectory and correspondence with morphological subpopulations. The TGase+ cells were mainly responsible for the coagulation, exhibiting distinguishable characteristics of hyalinocyte, and appeared to be developmentally arrested at an early stage of hemocyte differentiation. The CTL+ cells and Crustin+ cells arrested at terminal stages of differentiation mainly participated in recognizing foreign pathogens and initiating immune defense responses, owning distinctive features of granule-containing hemocytes. Furthermore, we have revealed the functional sub-clusters of three hemocyte clusters and their potential differentiation pathways according to the expression of genes involved in cell cycle, cell differentiation and immune response, and the successive differentiation and maturation of hyalinocytes to granule-containing hemocytes have also mapped. The results revealed the diversity of shrimp hemocytes and provide new theoretical rationale for hemocyte classification, which also facilitate systematic research on crustacean immunity.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
47
|
Zhao K, Qin Y, Nan X, Zhou K, Song Y, Li W, Wang Q. The role of ficolin as a pattern recognition receptor in antibacterial immunity in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:494-504. [PMID: 36002084 DOI: 10.1016/j.fsi.2022.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Ficolin, a member of the fibrinogen-related proteins family (FREPs), functions as a pattern recognition receptor (PRR) in vertebrates and in invertebrates as a novel lectin. In this study, we discovered the Ficolin homolog of Chinese mitten crab (Eriocheir sinensis), which we named EsFicolin. The obtained sequence showed that it has a highly conserved C-terminal fibrinogen-related domain (FReD) and a coiled-coil structure for trimer formation. EsFicolin was up-regulated in hemocytes after being stimulated by bacteria. Recombinant EsFicolin protein binds to gram-negative and gram-positive bacteria and agglutinates bacteria through pathogen-associated molecular patterns. In-depth study found that recombinant EsFicolin could effectively remove bacteria and showed direct antibacterial activity. EsFicolin could also promote the phagocytosis of hemocytes to enhance bacterial clearance. These findings suggest that EsFicolin plays an important role in the crab antibacterial immune response.
Collapse
Affiliation(s)
- Ke Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Song
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
48
|
Huang X, Xu Y, Zhao Y, Cao X, Wang D, Yan J, Wei T, Dai X, Xu Z, Ren Q. Characterization of four spliced isoforms of a transmembrane C-type lectin from Procambarus clarkii and their function in facilitating WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1127-1138. [PMID: 35870750 DOI: 10.1016/j.fsi.2022.07.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
C-type lectin (CTL) is an important pattern recognition receptor that play vital functions in the innate immunity. Many soluble CTLs in crustacean participate in the inhibition or promotion of white spot syndrome virus (WSSV) infection. However, whether transmembrane CTLs participate in WSSV infection in crustacean remains unknown. In the present study, four spliced isoforms of a transmembrane CTL (designated as PcTlec) from Procambarus clarkii were identified for the first time. The genome structure of PcTlec contains eight exons, six known introns, and one unknown intron. PcTlec-isoform1 is produced by intron retention, whereas PcTlec-isoform3 and PcTlec-isoform4 are produced by exon skipping. All of them contain the transmembrane domain and characteristic carbohydrate recognition domain (CRD). Four PcTlec isoforms were mainly expressed in the hepatopancreas, stomach, and intestine. After WSSV challenge, the expression levels of PcTlec-isoform1-4 in the intestine were upregulated. The knockdown of the region shared by four PcTlec isoforms evidently decreased the expression of WSSV envelope protein VP28 and the copies of viral particles. A recombinant protein (rPcTlec-CRD) containing the CRD that was shared by four PcTlec isoforms was acquired by procaryotic expression system. The injection of purified rPcTlec-CRD protein evidently increased the VP28 expression and WSSV copies during viral infection. Moreover, rPcTlec-CRD could directly bind to WSSV and interact with VP28 protein. These findings indicate that new-found transmembrane CTL isoforms in P. clarkii may act as viral receptors that facilitate WSSV infection. This study contributes to the recognition and understanding of the functions of transmembrane CTLs in crustacean in the infection of host by WSSV.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Yu Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China
| | - Yuqi Zhao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xunyuan Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Dandan Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Jing Yan
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Tianxiang Wei
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province, 210017, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
49
|
Chen HY, Li WY, Wang J, Bo GW, Yang GW, Yang HT. A C-type lectin containing two carbohydrate recognition domains participates in the antibacterial response by regulating the JNK pathway and promoting phagocytosis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:349-356. [PMID: 35752372 DOI: 10.1016/j.fsi.2022.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
C-type lectins (CTLs) are important immune-related molecules in crustaceans. However, the immunologic mechanism by which CTLs eliminate invading pathogens is still unclear. In this study, we studied the antimicrobial mechanism of a CTL containing two carbohydrate recognition domains (DClec). After Aeromonas hydrophila challenge, several antimicrobial peptides (ALF1, ALF4, ALF5 and lys-i2) were upregulated. The transcript levels of ALF1, ALF4 and ALF5 were downregulated after A. hydrophila challenge in groups with DClec interference or inhibition compared with the control group. Similar results were obtained after c-Jun N-terminal kinase (JNK) interference. This finding indicates that DClec might regulate the JNK signalling pathway and subsequently adjust antimicrobial peptide (AMP) expression. Additionally, we found that DClec was secreted into the hemolymph. Recombinant protein DClec (rDClec) agglutinated gram-positive or gram-negative bacteria. Both rDClec and the native DClec in hemolymph bound to different bacteria. In this process, Ca2+ promoted the rDClec bacterial binding ability. After DClec interference, the phagocytosis ability of hemocytes was lower than that of the control group. Therefore, DClec can facilitate bacterial elimination by promoting AMPs expression and hemocyte phagocytosis.
Collapse
Affiliation(s)
- Hong-Ye Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wen-Ya Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jie Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Gong-Wen Bo
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
50
|
Holland OJ, Toomey M, Ahrens C, Hoffmann AA, Croft LJ, Sherman CDH, Miller AD. Whole genome resequencing reveals signatures of rapid selection in a virus-affected commercial fishery. Mol Ecol 2022; 31:3658-3671. [PMID: 35555938 PMCID: PMC9327721 DOI: 10.1111/mec.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
Abstract
Infectious diseases are recognized as one of the greatest global threats to biodiversity and ecosystem functioning. Consequently, there is a growing urgency to understand the speed at which adaptive phenotypes can evolve and spread in natural populations to inform future management. Here we provide evidence of rapid genomic changes in wild Australian blacklip abalone (Haliotis rubra) following a major population crash associated with an infectious disease. Genome scans on H. rubra were performed using pooled whole genome resequencing data from commercial fishing stocks varying in historical exposure to haliotid herpesvirus-1 (HaHV-1). Approximately 25,000 single nucleotide polymorphism loci associated with virus exposure were identified, many of which mapped to genes known to contribute to HaHV-1 immunity in the New Zealand pāua (Haliotis iris) and herpesvirus response pathways in haliotids and other animal systems. These findings indicate genetic changes across a single generation in H. rubra fishing stocks decimated by HaHV-1, with stock recovery potentially determined by rapid evolutionary changes leading to virus resistance. This is a novel example of apparently rapid adaptation in natural populations of a nonmodel marine organism, highlighting the pace at which selection can potentially act to counter disease in wildlife communities.
Collapse
Affiliation(s)
- Owen J. Holland
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Madeline Toomey
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Collin Ahrens
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
- Research Centre for Ecosystem ResilienceAustralian Institute of Botanical ScienceRoyal Botanic GardenSydneyNew South WalesAustralia
| | - Ary A. Hoffmann
- School of BioSciencesBio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laurence J. Croft
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| | - Craig D. H. Sherman
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
| | - Adam D. Miller
- School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- Deakin Genomics CentreDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|