1
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Crow RS, Shaw CG, Grayfer L, Smith LC. Recombinant SpTransformer proteins are functionally diverse for binding and phagocytosis by three subtypes of sea urchin phagocytes. Front Immunol 2024; 15:1372904. [PMID: 38742116 PMCID: PMC11089230 DOI: 10.3389/fimmu.2024.1372904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.
Collapse
Affiliation(s)
| | | | | | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
3
|
Ardavín C, Alvarez‐Ladrón N, Ferriz M, Gutiérrez‐González A, Vega‐Pérez A. Mouse Tissue-Resident Peritoneal Macrophages in Homeostasis, Repair, Infection, and Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206617. [PMID: 36658699 PMCID: PMC10104642 DOI: 10.1002/advs.202206617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Large peritoneal macrophages (LPMs) are long-lived, tissue-resident macrophages, formed during embryonic life, developmentally and functionally confined to the peritoneal cavity. LPMs provide the first line of defense against life-threatening pathologies of the peritoneal cavity, such as abdominal sepsis, peritoneal metastatic tumor growth, or peritoneal injuries caused by trauma, or abdominal surgery. Apart from their primary phagocytic function, reminiscent of primitive defense mechanisms sustained by coelomocytes in the coelomic cavity of invertebrates, LPMs fulfill an essential homeostatic function by achieving an efficient clearance of apoptotic, that is crucial for the maintenance of self-tolerance. Research performed over the last few years, in mice, has unveiled the mechanisms by which LPMs fulfill a crucial role in repairing peritoneal injuries and controlling microbial and parasitic infections, reflecting that the GATA6-driven LPM transcriptional program can be modulated by extracellular signals associated with pathological conditions. In contrast, recent experimental evidence supports that peritoneal tumors can subvert LPM metabolism and function, leading to the acquisition of a tumor-promoting potential. The remarkable functional plasticity of LPMs can be nevertheless exploited to revert tumor-induced LPM protumor potential, providing the basis for the development of novel immunotherapeutic approaches against peritoneal tumor metastasis based on macrophage reprogramming.
Collapse
Affiliation(s)
- Carlos Ardavín
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Natalia Alvarez‐Ladrón
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Margarita Ferriz
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | | | - Adrián Vega‐Pérez
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
- Present address:
Sandra and Edward Meyer Cancer CenterWeill Cornell Medicine1300 York AvenueNew YorkNY10065USA
| |
Collapse
|
4
|
Parajuli K, Fahim N, Mumu S, Palu R, Mustafa A. Antibacterial potential of Luidia clathrata (sea star) tissue extracts against selected pathogenic bacteria. PLoS One 2023; 18:e0281889. [PMID: 36862671 PMCID: PMC9980771 DOI: 10.1371/journal.pone.0281889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
As resistance to traditional antibiotics has become a major issue, it is essential to explore natural sources for new antimicrobial agents. The marine environment offers a variety of natural bioactive compounds. In this study, we examined the antibacterial potential of Luidia clathrata, a tropical sea star species. The experiment was conducted against both gram-positive (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Bacillus cereus and Mycobacterium smegmatis) and gram-negative (Proteus mirabilis, Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) bacteria using disk diffusion method. Specifically, we extracted the body wall and gonad using methanol, ethyl acetate, and hexane. Our findings show that the body wall extract using ethyl acetate (1.78μg/ml) was particularly effective against all tested pathogens, while the gonad extract (0.107μg/ml) showed activity against six out of ten selected pathogens. This is a crucial and new discovery that suggests L. clathrata may be a useful source for discovering antibiotics and more research is required to pinpoint and comprehend the active ingredients.
Collapse
Affiliation(s)
- Kusum Parajuli
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Nahian Fahim
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Sinthia Mumu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Rebecca Palu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
- * E-mail:
| |
Collapse
|
5
|
Saucedo-Vázquez JP, Gushque F, Vispo NS, Rodriguez J, Gudiño-Gomezjurado ME, Albericio F, Tellkamp MP, Alexis F. Marine Arthropods as a Source of Antimicrobial Peptides. Mar Drugs 2022; 20:501. [PMID: 36005504 PMCID: PMC9409781 DOI: 10.3390/md20080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Peptide therapeutics play a key role in the development of new medical treatments. The traditional focus on endogenous peptides has shifted from first discovering other natural sources of these molecules, to later synthesizing those with unique bioactivities. This review provides concise information concerning antimicrobial peptides derived from marine crustaceans for the development of new therapeutics. Marine arthropods do not have an adaptive immune system, and therefore, they depend on the innate immune system to eliminate pathogens. In this context, antimicrobial peptides (AMPs) with unique characteristics are a pivotal part of the defense systems of these organisms. This review covers topics such as the diversity and distribution of peptides in marine arthropods (crustacea and chelicerata), with a focus on penaeid shrimps. The following aspects are covered: the defense system; classes of AMPs; molecular characteristics of AMPs; AMP synthesis; the role of penaeidins, anti-lipopolysaccharide factors, crustins, and stylicins against microorganisms; and the use of AMPs as therapeutic drugs. This review seeks to provide a useful compilation of the most recent information regarding AMPs from marine crustaceans, and describes the future potential applications of these molecules.
Collapse
Affiliation(s)
- Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - Fernando Gushque
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Jenny Rodriguez
- Escuela Superior Politécnica del Litoral (ESPOL), Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil 090211, Ecuador;
- Facultad de Ciencias de la Vida (FCV), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil 090708, Ecuador
| | - Marco Esteban Gudiño-Gomezjurado
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa;
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Markus P. Tellkamp
- School of Biological Sciences & Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (F.G.); (N.S.V.)
| | - Frank Alexis
- Politecnico, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
6
|
Moreno-García DM, Salas-Rojas M, Fernández-Martínez E, López-Cuellar MDR, Sosa-Gutierrez CG, Peláez-Acero A, Rivero-Perez N, Zaragoza-Bastida A, Ojeda-Ramírez D. Sea urchins: an update on their pharmacological properties. PeerJ 2022; 10:e13606. [PMID: 35811815 PMCID: PMC9261939 DOI: 10.7717/peerj.13606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
Sea urchins are a group of benthic invertebrates characterized by having rigid globose bodies, covered in spines, and have an innate immune system that has allowed them to survive in the environment and defend against many pathogens that affect them. They are consumed for their unique flavor, but also for possessing a rich source of bioactive compounds which make them a source for a wide array of medicinal properties. Thus, these may be used to discover and develop new drugs such as anti-bacterials, anti-carcinogenics and anti-virals. Precisely for those reasons, this revision is centered on the known biological activities in various sea urchin species. Recently, the potential pharmacological benefits of nine sea urchin species [Diadema antillarum (Philippi 1845), Echinometra mathaei (de Blainville), Evechinus chloroticus (Valenciennes), Mesocentrotus nudus (Agassiz, 1863), Paracentrotus lividus (Lamarck, 1816), Scaphechinus mirabilis (Agazzis, 1863), Stomopneustes variolaris (Lamarck, 1816), Tripneustes depressus (Agassiz, 1863), and Tripneustes ventricosus (Lamarck, 1816)] have been evaluated. Our work includes a comprehensive review of the anti-fungal, anti-parasitic, anti-inflammatory, hepatoprotective, anti-viral, anti-diabetic, anti-lipidemic, gastro-protective and anti-cardiotoxic effects. Furthermore, we revised the compounds responsible of these pharmacological effects. This work was intended for a broad readership in the fields of pharmacology, drugs and devices, marine biology and aquaculture, fisheries and fish science. Our results suggest that organic extracts, as well as pure compounds obtained from several parts of sea urchin bodies are effective in vitro and in vivo pharmacological models. As such, these properties manifest the potential use of sea urchins to develop emergent active ingredients.
Collapse
Affiliation(s)
- Dulce María Moreno-García
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Monica Salas-Rojas
- Unidad de Investigación Médica en Inmunología, Unidad Medica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional “Siglo XXI”, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eduardo Fernández-Martínez
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, Mexico
| | - Ma del Rocío López-Cuellar
- Área Académica de Ingeniería en Alimentos e Ingeniería Agroindustrial. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
| | - Carolina G. Sosa-Gutierrez
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Armando Peláez-Acero
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| | - Deyanira Ojeda-Ramírez
- Área Académica de Medicina Veterinaria y Zootecnia. Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, Hidalgo, México
| |
Collapse
|
7
|
Hira J, Stensvåg K. Evidence for association of Vibrio echinoideorum with tissue necrosis on test of the green sea urchin Strongylocentrotus droebachiensis. Sci Rep 2022; 12:4859. [PMID: 35318339 PMCID: PMC8940906 DOI: 10.1038/s41598-022-08772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
"Sea urchin lesion syndrome" is known as sea urchin disease with the progressive development of necrotic epidermal tissue and loss of external organs, including appendages on the outer body surface. Recently, a novel strain, Vibrio echinoideorum has been isolated from the lesion of green sea urchin (Strongylocentrotus droebachiensis), an economically important mariculture species in Norway. V. echinoideorum has not been reported elsewhere in association with green sea urchin lesion syndrome. Therefore, in this study, an immersion based bacterial challenge experiment was performed to expose sea urchins (wounded and non-wounded) to V. echinoideorum, thereby mimicking a nearly natural host-pathogen interaction under controlled conditions. This infection experiment demonstrated that only the injured sea urchins developed the lesion to a significant degree when exposed to V. echinoideorum. Pure cultures of the employed bacterial strain were recovered from the infected animals and its identity was confirmed by the MALDI-TOF MS spectra profiling. Additionally, the hemolytic phenotype of V. echinoideorum substantiated its virulence potential towards the host, and this was also supported by the cytolytic effect on red spherule cells of sea urchin. Furthermore, the genome sequence of V. echinoideorum was assumed to encode potential virulence genes and were subjected to in silico comparison with the established virulence factors of Vibrio vulnificus and Vibrio tasmaniensis. This comparative virulence profile provided novel insights about virulence genes and their putative functions related to chemotaxis, adherence, invasion, evasion of the host immune system, and damage of host tissue and cells. Thus, it supports the pathogenicity of V. echinoideorum. In conclusion, the interaction of V. echinoideorum with injured sea urchin facilitates the development of lesion syndrome and therefore, revealing its potentiality as an opportunistic pathogen.
Collapse
Affiliation(s)
- Jonathan Hira
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
8
|
Investigation of potential antibiofilm properties of Antimicrobial Peptide (AMP) from Linckia laevigata against Candida albicans: An in vitro and in vivo study. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Dettleff P, Villagra M, González J, Fuentes M, Estrada JM, Valenzuela C, Molina A, Valdés JA. Effect of bacterial LPS, poly I:C and temperature on the immune response of coelomocytes in short term cultures of red sea urchin (Loxechinus albus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:187-193. [PMID: 32971271 DOI: 10.1016/j.fsi.2020.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
In echinoderms, the immune system plays a relevant role in defense against infection by pathogens. Particularly, in sea urchins, the immune system has been shown to be complex, especially in terms of the variety of immune genes and molecules described. A key component of the response to external pathogens are the Toll-like receptors (TLRs), which are a well-characterized class of pattern recognition receptors (PRRs) that participate in the recognition of pathogen-associated molecular patterns (PAMPs). Despite the fact that TLRs have been described in several sea urchin species, for the red sea urchin (Loxechinus albus), which is one of the most important sea urchins across the world in terms of fisheries, limited information on the TLR-mediated immune response exists. In the present study, for the first time, we evaluated the effect of thermal stress, LPS and poly I:C treatment on the coelomocyte immune response of Loxechinus albus to determine how these factors modulate TLR and strongylocin (antimicrobial peptides of echinoderms) responses. We show that the tlr3-like, tlr4-like, tlr6-like and tlr8-like transcripts are modulated by poly I:C, while LPS only modulates the tlr4-like response; there was no effect of temperature on TLR expression, as evaluated by RT-qPCR. Additionally, we showed that strongylocin-1 and strongylocin-2 are modulated in response to simulated viral infection with poly I:C, providing the first evidence of strongylocin expression in L. albus. Finally, we determined that temperature and LPS modify the viability of coelomocytes, while poly I:C treatment did not affect the viability of these cells. This study contributes to the knowledge of immune responses in sea urchins to improve the understanding of the role of TLRs and strongylocins in echinoderms.
Collapse
Affiliation(s)
- Phillip Dettleff
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Maximiliano Villagra
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Joaquín González
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Cristian Valenzuela
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alfredo Molina
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile.
| |
Collapse
|
10
|
Chiaramonte M, Arizza V, La Rosa S, Queiroz V, Mauro M, Vazzana M, Inguglia L. Allograft Inflammatory Factor AIF-1: early immune response in the Mediterranean sea urchin Paracentrotus lividus. ZOOLOGY 2020; 142:125815. [DOI: 10.1016/j.zool.2020.125815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
|
11
|
Chiaramonte M, Inguglia L, Vazzana M, Deidun A, Arizza V. Stress and immune response to bacterial LPS in the sea urchin Paracentrotus lividus (Lamarck, 1816). FISH & SHELLFISH IMMUNOLOGY 2019; 92:384-394. [PMID: 31220574 DOI: 10.1016/j.fsi.2019.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The immune system of the sea urchin species Paracentrotus lividus is highly complex and, as yet, poorly understood. P. lividus coelomocytes mediate immune response through phagocytosis and encapsulation of non-self particles, in addition to the production of antimicrobial molecules. Despite this understanding, details of exactly how these processes occur and the mechanisms which drive them are still in need of clarification. In this study, we show how the bacterial lipopolysaccharides (LPS) is able to induce a stress response which increases the levels of the heat shock proteins HSP70 and HSP90 only a few hours after treatment. This study also shows that LPS treatment increases the expression of the β-thymosin-derivated protein paracentrin, the precursor of antimicrobial peptides.
Collapse
Affiliation(s)
- Marco Chiaramonte
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Luigi Inguglia
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| | - Mirella Vazzana
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Dept. of Geosciences, University of Malta, Msida, MSD, 2080, Malta
| | - Vincenzo Arizza
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| |
Collapse
|
12
|
Bergami E, Krupinski Emerenciano A, González-Aravena M, Cárdenas CA, Hernández P, Silva JRMC, Corsi I. Polystyrene nanoparticles affect the innate immune system of the Antarctic sea urchin Sterechinus neumayeri. Polar Biol 2019. [DOI: 10.1007/s00300-019-02468-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Smith LC, Hawley TS, Henson JH, Majeske AJ, Oren M, Rosental B. Methods for collection, handling, and analysis of sea urchin coelomocytes. Methods Cell Biol 2019; 150:357-389. [PMID: 30777184 DOI: 10.1016/bs.mcb.2018.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sea urchin coelomocytes can be collected in large numbers from adult sea urchins of the species, Strongylocentrotus purpuratus, which typically has 12-40mL of coelomic fluid. Coelomocytes are used for analysis of immune reactions and immune gene expression in addition to basic functions of cells, in particular for understanding structure and modifications of the cytoskeleton in phagocytes. The methods described here include coelomocyte isolation, blocking the clotting reaction, establishing and maintaining primary cultures, separation of different types of coelomocytes into fractions, processing live coelomocytes for light microscopy, fixation and staining for light and electron microscopy, analysis of coelomocyte populations by flow cytometry, and sorting single cells for more detailed follow-up analyses including transcriptomics or genomic characteristics. These methods are provided to make working with coelomocytes accessible to researchers who are unfamiliar with these cells and perhaps to aid others who have worked extensively with invertebrate cells.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States.
| | - Teresa S Hawley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John H Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Audrey J Majeske
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Benyamin Rosental
- Stem Cell Institute, School of Medicine, and the Hopkins Marine Station, Stanford University, Stanford, CA, United States
| |
Collapse
|
14
|
He SW, Wang JJ, Du X, Yue B, Wang GH, Zhou S, Xie B, Zhang M. A teleost TFPI-2 peptide that possesses a broad antibacterial spectrum and immune-stimulatory properties. FISH & SHELLFISH IMMUNOLOGY 2018; 82:469-475. [PMID: 30149134 DOI: 10.1016/j.fsi.2018.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 05/06/2023]
Abstract
Tissue factor pathway inhibitor 2 (TFPI-2) is an analogue of TFPI-1 and a potent endogenous inhibitor of tissue factor (TF)-mediated blood coagulation. Previous reports have shown that several peptides derived from human and vertebrates TFPI-2 possess antibacterial activity against diverse bacteria. In this study, a C-terminal peptide, TO24 (with 24 amino acids), derived from red drum (Sciaenops ocellatus) TFPI-2, was synthesized and investigated for its antimicrobial spectrum, action mode, as well as the immune-stimulatory property. Our results indicated that TO24 was active against Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus; Gram-negative bacteria Vibrio litoralis, Vibrio ichthyoenteri, Vibrio vulnificus and Vibrio scophthalmi, as well as fish megalocytivirus, infectious spleen and kidney necrosis virus (ISKNV). During its interaction with V. vulnificus, TO24 exerted its antibacterial activity by destroying cell membrane integrity, penetrating the cytoplasm and inducing degradation of genomic DNA and total RNA. In addition, TO24 had no hemolytic activity against red drum blood cells. In vitro, TO24 enhanced bactericidal activity of red drum macrophages. In vivo, administration of red drum with TO24 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. These results indicate that TO24 is a broad-spectrum antimicrobial peptide with immune-stimulatory properties and it has the potential to be used as an antimicrobial agent in aquaculture.
Collapse
Affiliation(s)
- Shu-Wen He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing-Jing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Du
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Yue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bing Xie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Spinello A, Cusimano MG, Schillaci D, Inguglia L, Barone G, Arizza V. Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of β-Thymosin of Sea Urchin Paracentrotus lividus. Mar Drugs 2018; 16:md16100366. [PMID: 30279359 PMCID: PMC6213101 DOI: 10.3390/md16100366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022] Open
Abstract
With the aim to obtain new antimicrobials against important pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, we focused on antimicrobial peptides (AMPs) from Echinoderms. An example of such peptides is Paracentrin 1 (SP1), a chemically synthesised peptide fragment of a sea urchin thymosin. In the present paper, we report on the biological activity of a Paracentrin 1 derivative obtained by recombination. The recombinant paracentrin RP1, in comparison to the synthetic SP1, is 22 amino acids longer and it was considerably more active against the planktonic forms of S. aureus ATCC 25923 and P. aeruginosa ATCC 15442 at concentrations of 50 µg/mL. Moreover, it was able to inhibit biofilm formation of staphylococcal and P. aeruginosa strains at concentrations equal to 5.0 and 10.7 µg/mL, respectively. Molecular dynamics (MD) simulations allowed to rationalise the results of the experimental investigations, providing atomistic insights on the binding of RP1 toward models of mammalian and bacterial cell membranes. Overall, the results obtained point out that RP1 shows a remarkable preference for bacterial membranes, in excellent agreement with the antibacterial activity, highlighting the promising potential of using the tested peptide as a template for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Angelo Spinello
- CNR-IOM-DEMOCRITOS c/o International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| | - Maria Grazia Cusimano
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| | - Domenico Schillaci
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| | - Luigi Inguglia
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| | - Giampaolo Barone
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| | - Vincenzo Arizza
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 18, 90123 Palermo, Italy.
| |
Collapse
|
16
|
Chou HY, Lun CM, Smith LC. SpTransformer proteins from the purple sea urchin opsonize bacteria, augment phagocytosis, and retard bacterial growth. PLoS One 2018; 13:e0196890. [PMID: 29738524 PMCID: PMC5940198 DOI: 10.1371/journal.pone.0196890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/20/2018] [Indexed: 01/05/2023] Open
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, has a complex and robust immune system that is mediated by a number of multi-gene families including the SpTransformer (SpTrf) gene family (formerly Sp185/333). In response to immune challenge from bacteria and various pathogen-associated molecular patterns, the SpTrf genes are up-regulated in sea urchin phagocytes and express a diverse array of SpTrf proteins. We show here that SpTrf proteins from coelomocytes and isolated by nickel affinity (cNi-SpTrf) bind to Gram-positive and Gram-negative bacteria and to Baker's yeast, Saccharomyces cerevisiae, with saturable kinetics and specificity. cNi-SpTrf opsonization of the marine bacteria, Vibrio diazotrophicus, augments phagocytosis, however, opsonization by the recombinant protein, rSpTrf-E1, does not. Binding by cNi-SpTrf proteins retards growth rates significantly for several species of bacteria. SpTrf proteins, previously thought to be strictly membrane-associated, are secreted from phagocytes in short term cultures and bind V. diazotrophicus that are located both outside of and within phagocytes. Our results demonstrate anti-microbial activities of native SpTrf proteins and suggest variable functions among different SpTrf isoforms. Multiple isoforms may act synergistically to detect a wide array of pathogens and provide flexible and efficient host immunity.
Collapse
Affiliation(s)
- Hung-Yen Chou
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| | - Cheng Man Lun
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States of America
| |
Collapse
|
17
|
Tryptophan-Rich and Proline-Rich Antimicrobial Peptides. Molecules 2018; 23:molecules23040815. [PMID: 29614844 PMCID: PMC6017362 DOI: 10.3390/molecules23040815] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022] Open
Abstract
Due to the increasing emergence of drug-resistant pathogenic microorganisms, there is a world-wide quest to develop new-generation antibiotics. Antimicrobial peptides (AMPs) are small peptides with a broad spectrum of antibiotic activities against bacteria, fungi, protozoa, viruses and sometimes exhibit cytotoxic activity toward cancer cells. As a part of the native host defense system, most AMPs target the membrane integrity of the microorganism, leading to cell death by lysis. These membrane lytic effects are often toxic to mammalian cells and restrict their systemic application. However, AMPs containing predominantly either tryptophan or proline can kill microorganisms by targeting intracellular pathways and are therefore a promising source of next-generation antibiotics. A minimum length of six amino acids is required for high antimicrobial activity in tryptophan-rich AMPs and the position of these residues also affects their antimicrobial activity. The aromatic side chain of tryptophan is able to rapidly form hydrogen bonds with membrane bilayer components. Proline-rich AMPs interact with the 70S ribosome and disrupt protein synthesis. In addition, they can also target the heat shock protein in target pathogens, and consequently lead to protein misfolding. In this review, we will focus on describing the structures, sources, and mechanisms of action of the aforementioned AMPs.
Collapse
|
18
|
López Y, Cepas V, Soto SM. The Marine Ecosystem as a Source of Antibiotics. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Solstad RG, Li C, Isaksson J, Johansen J, Svenson J, Stensvåg K, Haug T. Novel Antimicrobial Peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the Edible Sea Urchin Echinus esculentus Have 6-Br-Trp Post-Translational Modifications. PLoS One 2016; 11:e0151820. [PMID: 27007817 PMCID: PMC4805251 DOI: 10.1371/journal.pone.0151820] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/06/2016] [Indexed: 12/18/2022] Open
Abstract
The global problem of microbial resistance to antibiotics has resulted in an urgent need to develop new antimicrobial agents. Natural antimicrobial peptides are considered promising candidates for drug development. Echinoderms, which rely on innate immunity factors in the defence against harmful microorganisms, are sources of novel antimicrobial peptides. This study aimed to isolate and characterise antimicrobial peptides from the Edible sea urchin Echinus esculentus. Using bioassay-guided purification and cDNA cloning, three antimicrobial peptides were characterised from the haemocytes of the sea urchin; two heterodimeric peptides and a cysteine-rich peptide. The peptides were named EeCentrocin 1 and 2 and EeStrongylocin 2, respectively, due to their apparent homology to the published centrocins and strongylocins isolated from the green sea urchin Strongylocentrotus droebachiensis. The two centrocin-like peptides EeCentrocin 1 and 2 are intramolecularly connected via a disulphide bond to form a heterodimeric structure, containing a cationic heavy chain of 30 and 32 amino acids and a light chain of 13 amino acids. Additionally, the light chain of EeCentrocin 2 seems to be N-terminally blocked by a pyroglutamic acid residue. The heavy chains of EeCentrocins 1 and 2 were synthesised and shown to be responsible for the antimicrobial activity of the natural peptides. EeStrongylocin 2 contains 6 cysteines engaged in 3 disulphide bonds. A fourth peptide (Ee4635) was also discovered but not fully characterised. Using mass spectrometric and NMR analyses, EeCentrocins 1 and 2, EeStrongylocin 2 and Ee4635 were all shown to contain post-translationally brominated Trp residues in the 6 position of the indole ring.
Collapse
Affiliation(s)
- Runar Gjerp Solstad
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Chun Li
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, the Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jostein Johansen
- Department of Chemistry, the Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Johan Svenson
- Department of Chemistry, the Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
20
|
A recombinant Sp185/333 protein from the purple sea urchin has multitasking binding activities towards certain microbes and PAMPs. Immunobiology 2016; 221:889-903. [PMID: 27020848 DOI: 10.1016/j.imbio.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 11/22/2022]
Abstract
The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that responds to microbes effectively by swift expression of the highly diverse Sp185/333 gene family. The Sp185/333 proteins are predicted to have anti-pathogen functions based on inducible gene expression and their significant sequence diversity. Sp185/333 proteins are all predicted to be intrinsically disordered and do not exhibit sequence similarities to other known proteins. To test the anti-pathogen hypothesis, a recombinant Sp185/333 protein, rSp0032, was evaluated and found to exhibit specific binding to marine Vibrio diazotrophicus and to Saccharomyces cerevisiae, but not to two Bacillus species. rSp0032 also binds to LPS, β-1,3-glucan and flagellin but not to peptidoglycan. rSp0032 binding to LPS can be competed by LPS, β-1,3-glucan and flagellin but not by peptidoglycan. We speculate that the predicted intrinsically disordered structure of rSp0032 may adapt to different conformations in binding to a limited number of PAMPs and pathogens. Given that rSp0032 binds to a range of targets, and that up to 260 different Sp185/333 proteins can be expressed per individual sea urchin, this family of immune response proteins may facilitate effective host protection against a broad array of potential pathogens encountered in the marine environment.
Collapse
|
21
|
Smith LC, Hudgell MAB, Deiss T, Golconda P, Krasnec K, Lun CM, Neely H, Pereiro P, Priyam M, Semple SL, Skokal U, Tacchi L, Takizawa F, Xu Z, Yadav S. Conference Report: The 13th Congress of the International Society of Developmental and Comparative Immunology. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:56-64. [PMID: 26455465 DOI: 10.1016/j.dci.2015.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington DC, USA.
| | | | - Thaddeus Deiss
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Preethi Golconda
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Katina Krasnec
- Department of Biology, University of New Mexico, Albuquerque NM, USA
| | - Cheng Man Lun
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Harold Neely
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore MD, USA
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - Manisha Priyam
- Departmet of Zoology, University of Delhi, New Delhi, India
| | - Shawna L Semple
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Upasana Skokal
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Luca Tacchi
- Department of Biology, University of New Mexico, Albuquerque NM, USA
| | - Fumio Takizawa
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Zhen Xu
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Shruti Yadav
- Department of Biological Sciences, George Washington University, Washington DC, USA
| |
Collapse
|