1
|
Jiang C, Wang S. Identification and functional characterization of bactericidal permeability/increasing protein (BPI) from frog Nanorana yunnanensis (Paa yunnanensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104517. [PMID: 36028172 DOI: 10.1016/j.dci.2022.104517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Bactericidal permeability/increasing protein (BPI) and lipopolysaccharide-binding protein (LBP) have been most extensively studied in mammals, but little information is available regarding BPI and LBP in Amphibia. In this study we showed that the cDNA of BPI in the frog N. yunnanensis (P. yunnanensis) encoded a 490-amino-acid-long protein, the predicted tertiary structure appears closely similar to mammalian BPIs in terms of sequence and structure. Like mammalian BPI gene, the frog gene nybpi was widely expressed in various tissues and was inducible by challenge with LPS or Gram-negative bacterium. We also showed that recombinant NyBPI, resembling mammalian BPIs, specifically binds with LPS. In addition, the recombinant NyBPI displayed antibacterial activity against Gram-negative bacteria Vibrio anguillarum in a dose-dependent manner. These results indicate that NyBPI may play an important role in an immune response against bacteria in amphibians.
Collapse
Affiliation(s)
- Chengyan Jiang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China.
| | - Shaolong Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| |
Collapse
|
2
|
Qu B, Zhang S, Ma Z, Gao Z. Hepatic cecum: a key integrator of immunity in amphioxus. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:279-292. [PMID: 37073295 PMCID: PMC10077268 DOI: 10.1007/s42995-020-00080-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/21/2020] [Indexed: 05/03/2023]
Abstract
The vertebrate liver is regarded as an organ essential to the regulation of immunity and inflammation as well as being central to the metabolism of nutrients. Here, we discuss the functions that the hepatic cecum of amphioxus plays in the regulation of immunity and inflammation, and the molecular basis of this. It is apparent that the hepatic cecum performs important roles in the immunity of amphioxus including immune surveillance, clearance of pathogens and acute phase response. Therefore, the hepatic cecum, like the vertebrate liver, is an organ functioning as a key integrator of immunity in amphioxus.
Collapse
Affiliation(s)
- Baozhen Qu
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Zengyu Ma
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Zhan Gao
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
3
|
Wang W, Wang C, Chen W, Ding S. Advances in immunological research of amphioxus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103992. [PMID: 33387559 DOI: 10.1016/j.dci.2020.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Amphioxus, one of the most closely related invertebrates to vertebrates, is an important animal model for studying the origin and evolution of vertebrate immunity, especially the transition from innate immunity to adaptive immunity. The current research progresses of amphioxus in the field of immune organs, immune cells, complement system, cytokines, nuclear factor kappa B, immune-related lectins and enzymes are summarized, and some issues that remain to be understood or are in need of further clarification are highlighted. We hope to provide references for more in-depth study of the amphioxus immune system and lay a solid foundation for the construction of three-dimensional immune network in amphioxus from ontogeny to phylogeny.
Collapse
Affiliation(s)
- Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| |
Collapse
|
4
|
Dong C, Jiang Z, Zhang X, Feng J, Wang L, Tian X, Xu P, Li X. Phylogeny of Slc15 family and response to Aeromonas hydrophila infection following Lactococcus lactis dietary supplementation in Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2020; 106:705-714. [PMID: 32846240 DOI: 10.1016/j.fsi.2020.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Solute carrier 15 family (Slc15) are membrane proteins that utilize the proton gradient and negative membrane protential for the transmembrane transporter of di-/tripeptide and peptide-mimetic molecules, in addition, they also play important roles in immunoreaction. In this study, 10 Slc15 genes were identified in the common carp genome database. Comparative genomics analysis showed considerable expansion of the Slc15 genes and verified the four-round whole genome duplication (WGD) event in common carp. Phylogenetic analysis revealed all Slc15 genes of common carp were clustered into orthologous groups indicating the highly conservative during evolution. Besides, the tissues and temporal expression examined by RT-PCR and qRT-PCR showed that most of the Slc15 genes had a narrow tissue distribution and exhibited tissue-specific expression patterns. Expression divergences were observed between these copies proving function divergence after the WGD. Then, we investigated the dietary supplementation effects of three Lactococcus lactis strains on the expression of Slc15 genes in common carp infected by A. hydrophila to find an effective way to treat aquatic diseases. Almost all of the Slc15 genes had an increased expression trend in the early post-challenge stage, and reached the highest expression level at 12h post-challenge. Then, the expression level showed a bluff descent at the last two stages and the expression level reached the lowest at 48 h post-challenge. Slc15 genes expression is actively up-regulated when stimulated by inflammatory factors, which can "amplify" immune signals, and improve the body's defense against foreign invasion in the early stage of the inflammatory response. So activation of the Slc15 genes may be an effective way for infectious disease treatment. As expected, three strains improved the expression of Slc15 genes variously compared with the control/infection groups. The strain 3 of L. lactis had a better induction of Slc15 genes compared with strain 1 and strain 2. It might be applied as a potential activation of Slc15 genes for disease treatment and adding befitting L. lactis may be a good way to protect aquatilia from bacillosis.
Collapse
Affiliation(s)
- Chuanju Dong
- College of Fishery, Henan Normal University, Xinxiang, 453007, China; Key Laboratory of Tropical&Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, China; Pearl River Fisheries Research Institute CAFS, Guangdong, 510380, China.
| | - Zhou Jiang
- College of Fishery, Henan Normal University, Xinxiang, 453007, China
| | - Xianyao Zhang
- College of Fishery, Henan Normal University, Xinxiang, 453007, China
| | - Junchang Feng
- College of Fishery, Henan Normal University, Xinxiang, 453007, China
| | - Lei Wang
- College of Fishery, Henan Normal University, Xinxiang, 453007, China
| | - Xue Tian
- College of Fishery, Henan Normal University, Xinxiang, 453007, China
| | - Peng Xu
- College of Fishery, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Xuejun Li
- College of Fishery, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
5
|
Rivera-Serrano EE, Gizzi AS, Arnold JJ, Grove TL, Almo SC, Cameron CE. Viperin Reveals Its True Function. Annu Rev Virol 2020; 7:421-446. [PMID: 32603630 DOI: 10.1146/annurev-virology-011720-095930] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most cells respond to viral infections by activating innate immune pathways that lead to the induction of antiviral restriction factors. One such factor, viperin, was discovered almost two decades ago based on its induction during viral infection. Since then, viperin has been shown to possess activity against numerous viruses via multiple proposed mechanisms. Most recently, however, viperin was demonstrated to catalyze the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously unknown ribonucleotide. Incorporation of ddhCTP causes premature termination of RNA synthesis by the RNA-dependent RNA polymerase of some viruses. To date, production of ddhCTP by viperin represents the only activity of viperin that links its enzymatic activity directly to an antiviral mechanism in human cells. This review examines the multiple antiviral mechanisms and biological functions attributed to viperin.
Collapse
Affiliation(s)
- Efraín E Rivera-Serrano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Anthony S Gizzi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , .,Department of Pharmacology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jamie J Arnold
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| | - Craig E Cameron
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
6
|
Wang P, Zhang L, Li H, Wang Y, Zhang S, Liu Z. Characterization of GRP as a functional neuropeptide in basal chordate amphioxus. Int J Biol Macromol 2019; 142:384-394. [PMID: 31593737 DOI: 10.1016/j.ijbiomac.2019.09.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/14/2023]
Abstract
Amphioxus belongs to the subphylum cephalochordata, an extant representative of the most basal chordates, whose regulation of endocrine system remains ambiguous. Here we clearly demonstrated the existence of a functional GRP neuropeptide in amphioxus, which was able to interact with GRP receptor, activate both PKC and PKA pathways, increase gh, igf, and vegf expression. We also showed that the transcription level of amphioxus grp was affected by temperature and light, indicating the role of this gene in the regulation of energy balance and circadian rhythms. In addition, the expression of the amphioxus grp was detected in cerebral vesicle that has been proposed to be the homologous organ of vertebrate brain. These data collectively suggested that a functional GRP neuropeptide had already emerged in amphioxus, which provided insights into the evolutionary origin of GRP in chordate and the functional homology between the cerebral vesicle and vertebrate brain.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Liping Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Haoyi Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yunsheng Wang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
| | - Zhenhui Liu
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China.
| |
Collapse
|
7
|
Shanaka KASN, Tharuka MDN, Priyathilaka TT, Lee J. Molecular characterization and expression analysis of rockfish (Sebastes schlegelii) viperin, and its ability to enervate RNA virus transcription and replication in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 92:655-666. [PMID: 31252045 DOI: 10.1016/j.fsi.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Viperin, also known as RSAD2 (Radical S-adenosyl methionine domain containing 2), is an interferon-induced endoplasmic reticulum-associated antiviral protein. Previous studies have shown that viperin levels are elevated in the presence of viral RNA, but it has rarely been characterized in marine organisms. This study was designed to functionally characterize rockfish viperin (SsVip), to examine the effects of different immune stimulants on its expression, and to determine its subcellular localization. SsVip is a 349 amino acid protein with a predicted molecular mass of 40.24 kDa. It contains an S-adenosyl l-methionine binding conserved domain with a CNYKCGFC sequence. Unchallenged tissue expression analysis using quantitative real time PCR (qPCR) revealed SsVip expression to be the highest in the blood, followed by the spleen. When challenged with poly I:C, SsVip was upregulated by approximately 60-fold in the blood after 24 h, and approximately 50-fold in the spleen after 12 h. Notable upregulation was detected throughout the poly I:C challenge experiment in both tissues. Significant expression of SsVip was detected in the blood following Streptococcus iniae and lipopolysaccharide challenge, and viral hemorrhagic septicemia virus (VHSV) gene transcription was significantly downregulated during SsVip overexpression. Furthermore, cell viability assay and virus titer quantification with the presence of SsVip revealed a significant reduction in virus replication. As with previously identified viperin counterparts, SsVip was localized in the endoplasmic reticulum. Our findings show that SsVip is an antiviral protein crucial to innate immune defense.
Collapse
Affiliation(s)
- K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
8
|
Eslamloo K, Ghorbani A, Xue X, Inkpen SM, Larijani M, Rise ML. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol 2019; 10:311. [PMID: 30894853 PMCID: PMC6414715 DOI: 10.3389/fimmu.2019.00311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
Viperin is a key antiviral effector in immune responses of vertebrates including the Atlantic cod (Gadus morhua). Using cloning, sequencing and gene expression analyses, we characterized the Atlantic cod viperin at the nucleotide and hypothetical amino acid levels, and its regulating factors were investigated. Atlantic cod viperin cDNA is 1,342 bp long, and its predicted protein contains 347 amino acids. Using in silico analyses, we showed that Atlantic cod viperin is composed of 5 exons, as in other vertebrate orthologs. In addition, the radical SAM domain and C-terminal sequences of the predicted Viperin protein are highly conserved among various species. As expected, Atlantic cod Viperin was most closely related to other teleost orthologs. Using computational modeling, we show that the Atlantic cod Viperin forms similar overall protein architecture compared to mammalian Viperins. qPCR revealed that viperin is a weakly expressed transcript during embryonic development of Atlantic cod. In adults, the highest constitutive expression of viperin transcript was found in blood compared with 18 other tissues. Using isolated macrophages and synthetic dsRNA (pIC) stimulation, we tested various immune inhibitors to determine the possible regulating pathways of Atlantic cod viperin. Atlantic cod viperin showed a comparable pIC induction to other well-known antiviral genes (e.g., interferon gamma and interferon-stimulated gene 15-1) in response to various immune inhibitors. The pIC induction of Atlantic cod viperin was significantly inhibited with 2-Aminopurine, Chloroquine, SB202190, and Ruxolitinib. Therefore, endosomal-TLR-mediated pIC recognition and signal transducers (i.e., PKR and p38 MAPK) downstream of the TLR-dependent pathway may activate the gene expression response of Atlantic cod viperin. Also, these results suggest that antiviral responses of Atlantic cod viperin may be transcriptionally regulated through the interferon-activated pathway.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
Zhang QL, Ji XY, Li HW, Guo J, Wang F, Deng XY, Chen JY, Lin LB. Identification of circular RNAs and their altered expression under poly(I:C) challenge in key antiviral immune pathways in amphioxus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1053-1057. [PMID: 30590167 DOI: 10.1016/j.fsi.2018.12.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Amphioxus is a key model for studying comparative immunity of vertebrates. Circular RNA (circRNA), as RNAs with a circular structure, has received little attention until recently, where several studies have reported that circRNA expression changes are involved in the immune response in animals. However, circRNA and its immune role in amphioxus have not been previously studied. Here, circRNAs in Chinese amphioxus (Branchiostoma belcheri) were sequenced, and 1859 circRNAs were identified using two algorithms (find_circ and CIRI). The analysis of miRNA target sites on circRNAs showed that 332 circRNAs may function as miRNA sponges. Furthermore, we identified circRNAs that were conserved between B. belcheri and vertebrates, tracing the origin of these circRNAs within chordates. Additionally, in combination with several key antiviral immune (poly(I:C), pIC) pathways identified in our previous B. belcheri studies, nine circRNAs potentially involved in these pathways were identified using bioinformatic predictions. Among these nine circRNAs, eight were selected to examine their expression response in B. belcheri challenged by pIC in comparison to control using real-time quantitative PCR. The results showed that four circRNAs were induced as part of the antiviral response against pIC, while expression of two circRNAs was decreased, and the expression levels of the remaining two were not significantly altered after pIC challenge. This work is the first to identify circRNAs and reveal their antiviral role in amphioxus. Therefore, it opens a new window to explore the comparative immunology of circRNAs in chordates and the regulatory roles of circRNAs in antiviral immunity in amphioxus.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xin-Yu Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
10
|
Tharuka MDN, Priyathilaka TT, Yang H, Pavithiran A, Lee J. Molecular and transcriptional insights into viperin protein from Big-belly seahorse (Hippocampus abdominalis), and its potential antiviral role. FISH & SHELLFISH IMMUNOLOGY 2019; 86:599-607. [PMID: 30529464 DOI: 10.1016/j.fsi.2018.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Viperin is recognized as an antiviral protein that is stimulated by interferon, viral exposures, and other pathogenic molecules in vertebrate. In this study, a viperin homolog in the Big-belly seahorse (Hippocampus abdominalis; HaVip) was functionally characterized to determine its subcellular localization, expression pattern, and antiviral activity in vitro. The HaVip coding sequence encodes a 348 amino acid polypeptide with predicted molecular weight of 38.48 kDa. Sequence analysis revealed that HaVip comprises three main domains: the N-terminal amphipathic α-helix, a radical S-adenosyl-l-methionine (SAM) domain, and a conserved C-terminal domain. Transfected GFP-tagged HaVip protein was found to localize to the endoplasmic reticulum (ER). Overexpressed-HaVip in FHM cells was found to significantly reduce viral capsid gene expression in VHSV infection in vitro. Under normal physiological conditions, HaVip expression was ubiquitously detected in all 14 examined tissues of the seahorse, with the highest expression observed in the heart, followed by skin and blood. In vivo studies showed that HaVip was rapidly and predominantly upregulated in blood, kidney, and intestinal tissue upon poly (I:C) stimulus. LPS and Streptococus iniae challenges caused a significant increase in expression of HaVip in all the analyzed tissues. The obtained results suggest that HaVip is involved in the immune system of the seahorse, triggering antiviral and antibacterial responses, upon viral and bacterial pathogenic infections.
Collapse
Affiliation(s)
- M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Amirthalingam Pavithiran
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
11
|
Chakravarti A, Selvadurai K, Shahoei R, Lee H, Fatma S, Tajkhorshid E, Huang RH. Reconstitution and substrate specificity for isopentenyl pyrophosphate of the antiviral radical SAM enzyme viperin. J Biol Chem 2018; 293:14122-14133. [PMID: 30030381 DOI: 10.1074/jbc.ra118.003998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
Viperin is a radical SAM enzyme that has been shown to possess antiviral activity against a broad spectrum of viruses; however, its molecular mechanism is unknown. We report here that recombinant fungal and archaeal viperin enzymes catalyze the addition of the 5'-deoxyadenosyl radical (5'-dA•) to the double bond of isopentenyl pyrophosphate (IPP), producing a new compound we named adenylated isopentyl pyrophosphate (AIPP). The reaction is specific for IPP, as other pyrophosphate compounds involved in the mevalonate biosynthetic pathway did not react with 5'-dA• Enzymatic reactions employing IPP derivatives as substrates revealed that any chemical change in IPP diminishes its ability to be an effective substrate of fungal viperin. Mutational studies disclosed that the hydroxyl group on the side chain of Tyr-245 in fungal viperin is the likely source of hydrogen in the last step of the radical addition, providing mechanistic insight into the radical reaction catalyzed by fungal viperin. Structure-based molecular dynamics (MD) simulations of viperin interacting with IPP revealed a good fit of the isopentenyl motif of IPP to the active site cavity of viperin, unraveling the molecular basis of substrate specificity of viperin for IPP. Collectively, our findings indicate that IPP is an effective substrate of fungal and archaeal viperin enzymes and provide critical insights into the reaction mechanism.
Collapse
Affiliation(s)
| | | | - Rezvan Shahoei
- Physics.,the Beckman Institute for Advanced Science and Technology, and
| | - Hugo Lee
- From the Departments of Biochemistry and
| | | | - Emad Tajkhorshid
- From the Departments of Biochemistry and.,the Beckman Institute for Advanced Science and Technology, and.,the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Raven H Huang
- From the Departments of Biochemistry and .,the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
12
|
Gao S, Xiong W, Wei L, Liu J, Liu X, Xie J, Song X, Bi J, Li B. Transcriptome profiling analysis reveals the role of latrophilin in controlling development, reproduction and insecticide susceptibility in Tribolium castaneum. Genetica 2018; 146:287-302. [DOI: 10.1007/s10709-018-0020-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/30/2018] [Indexed: 12/23/2022]
|
13
|
Zhang QL, Qiu HY, Liang MZ, Luo B, Wang XQ, Chen JY. Exploring gene expression changes in the amphioxus gill after poly(I:C) challenge using digital expression profiling. FISH & SHELLFISH IMMUNOLOGY 2017; 70:57-65. [PMID: 28866273 DOI: 10.1016/j.fsi.2017.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Amphioxus, a cephalochordate, is a key model animal for studying the evolution of vertebrate immunity. Recently, studies have revealed that microRNA (miRNA) expression profiles change significantly in the amphioxus gill after immune stimulation, but it remains largely unknown how gene expression responds to immune stress. Elucidating gene expression changes in the amphioxus gill will provide a deeper understanding of the evolution of gill immunity in vertebrates. Here, we used high-throughput RNA sequencing technology (RNA-seq) to conduct tag-based digital gene expression profiling (DGE) analyses of the gills of control Branchiostoma belcheri and of those exposed to the viral mimic, poly(I:C) (pIC). Six libraries were created for the control and treatment groups including three biological replicates per group. A total of 1999 differently expressed genes (DEGs) were obtained, with 571 and 1428 DEGs showing up- or down-regulation, respectively, in the treatment group. Enrichment analysis of gene ontology (GO) terms and pathways revealed that the DEGs were primarily related to immune and defense response, apoptosis, human disease, cancer, protein metabolism, enzyme activity, and regulatory processes. In addition, eight DEGs were randomly selected to validate the RNA-seq data using real-time quantitative PCR (qRT-PCR), and the results confirmed the accuracy of the RNA-seq approach. Next, we screened eight key responding genes to examine the dynamic changes in expression levels at different time points in more detail. The results indicated that expressions of TRADD, MARCH, RNF31, NF-κb, CYP450, TNFRSF6B, IFI and LECT1 were induced to participate in the antiviral response against pIC. This study provides a valuable resource for understanding the role of the amphioxus gill in antiviral immunity and the evolution of gill immunity in vertebrates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023 China.
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023 China
| | - Ming-Zhong Liang
- Department of Marine Science, Qinzhou University, Qinzhou, 535000 China
| | - Bang Luo
- Guangxi Academy of Fishery Sciences, Nanning, 530000 China
| | - Xiu-Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023 China; LPS, Nanjing Institute of Geology and Paleontology, CAS, Nanjing, 210008 China
| | - Jun-Yuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023 China; LPS, Nanjing Institute of Geology and Paleontology, CAS, Nanjing, 210008 China.
| |
Collapse
|
14
|
Zhang QL, Xie ZQ, Liang MZ, Luo B, Wang XQ, Chen JY. Genome-wide gene expression analysis in the amphioxus, Branchiostoma belcheri after poly (I: C) challenge using strand-specific RNA-seq. Oncotarget 2017; 8:108392-108405. [PMID: 29312538 PMCID: PMC5752451 DOI: 10.18632/oncotarget.21553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
The gene expression associated with immune response to bacteria/bacterial mimic has been extensively analyzed in amphioxus, but remains largely unknown about how gene are involved in the immune response to viral invasion at expression level. Here, we analyze the rRNA-depleted transcriptomes of Branchiostoma belcheri using strand-specific RNA-seq in response to the viral mimic, poly (I:C) (pIC). A total of 5,317 differentially expressed genes were detected at treatment group by comparing with control. The gene with the most significant expression changes (top 15) after pIC challenge and 7 immune-related categories involving 58 differently expressed genes were scrutinized. By functional enrichment analysis of differently expressed genes, gene ontology terms involving response to stress and stimulus, apoptosis, catabolic and metabolic processes and enzyme activity were overrepresented, and several pathways related to immune signaling, immune response, cancer, apoptosis, viral disease, metabolism were activated after pIC injection. A positive correlation between the qRT-PCR and strand-specific RNA-seq data confirmed the accuracy of the RNA-seq results. Additionally, the expression of genes encoding NLRC5, CASP1, CASP6, CYP450, CAT, and MDA5 were induced in B. belcheri under pIC challenge. Our experiments provide insight into the immune response of amphioxus to pIC and valuable gene expression information for studying the evolution of antiviral immunity in vertebrates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Zheng-Qing Xie
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Ming-Zhong Liang
- Department of Marine Science, Qinzhou University, Qinzhou, China
| | - Bang Luo
- Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiu-Qiang Wang
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China
| |
Collapse
|
15
|
Wang P, Jiang C, Liu S, Cui P, Zhang Y, Zhang S. Trans-generational enhancement of C-type lysozyme level in eggs of zebrafish by dietary β-glucan. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:25-31. [PMID: 28408333 DOI: 10.1016/j.dci.2017.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/14/2017] [Indexed: 06/07/2023]
Abstract
β-glucan has been shown to increase non-specific immunity and resistance against infections or pathogenic bacteria in several fish species, but information regarding its trans-generational immune-enhancing effects is still rather limited. Lysozyme is a maternal immune factor playing an important role in the developing embryos of zebrafish. Here we clearly showe that β-glucan enhanced the level of C-type lysozyme in eggs of zebrafish, and the embryos derived from β-glucan-treated zebrafish were more resistant to bacterial challenge than control embryos. Moreover, the transferred lysozyme was apparently linked with the antimicrobial defense of early embryos. In addition, we also showed that β-glucan induced a significant increase in the synthesis of C-type lysozyme in previtellogenetic oocytes. Therefore, we show for the first time that β-glucan can enhance the lysozyme level in offspring via both inducing the transfer of the molecule from mothers to eggs and stimulating its endogenous production in oocytes.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Chengyan Jiang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China; College of Life Science and Technology, Hong He University, Mengzi, Yunnan 661100, China
| | - Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yu Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
16
|
Zhang QL, Zhu QH, Zhang F, Xu B, Wang XQ, Chen JY. Transcriptome-wide analysis of immune-responsive microRNAs against poly (I:C) challenge in Branchiostoma belcheri by deep sequencing and bioinformatics. Oncotarget 2017; 8:73590-73602. [PMID: 29088729 PMCID: PMC5650284 DOI: 10.18632/oncotarget.20570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Amphioxus is a key experimental animal for studying the evolution of vertebrate immune system. However, we still do not know about the roles of microRNAs (miRNAs) under viral stress in amphioxus. In this study, we sequenced six small RNA libraries (three biological replicates were included in the treatments challenged by the viral mimic, poly (I:C) (pIC) and control groups, respectively) from Branchiostoma belcheri. A total of 151 known miRNAs, 197 new miRNAs (named novel_mir, including nine conserved miRNAs) were identified by deep sequencing from the six libraries. We primarily focused on differentially expressed miRNAs (DEMs) after pIC challenge. Next, we screened a total of 77 DEMs, including 27 down- and 50 up-regulated DEMs in response to pIC challenge. Furthermore, we used real-time quantitative PCR (qRT-PCR) to verify the expression levels of 10 randomly selected DEMs. Target genes likely regulated by DEMs were predicted, and functional enrichment analyses of these targets were performed using bioinformatics approach. MiRNA targets of DEMs are primarily involved in immune response, diseases, cancer and regulation process, and could be largely linked to 14 immune-related signaling pathways, including NF-kappa B, NOD-like receptor, RIG-I-like receptor and endocytosis. The present study for the first time explores key regulatory roles of miRNAs in the innate antiviral immune response in amphioxus, and will provide insight into the molecular basis of antiviral immunity and evolution of immune-related miRNAs.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| | | | - Feng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Bin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Xiu-Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| | - Jun-Yuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China.,LPS, Nanjing Institute of Geology and Paleontology, Nanjing, China
| |
Collapse
|
17
|
Jiang C, Wang P, Li M, Liu S, Zhang S. Dietary β-glucan enhances the contents of complement component 3 and factor B in eggs of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:107-113. [PMID: 27375187 DOI: 10.1016/j.dci.2016.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
β-glucan has been shown to increase non-specific immunity and resistance against infections or pathogenic bacteria in several fish species, but no information is available regarding its trans-generational effects to date. Here we clearly demonstrated that β-glucan enhanced the contents of immune-relevant molecules C3 and Bf in eggs of zebrafish, and the embryos derived from β-1,3 glucan-treated zebrafish were more resistant to bacterial challenge than control embryos. Moreover, the transferred C3 and Bf were directly associated with the antimicrobial defense of early embryos. In addition, feeding female zebrafish with β-glucan had little detrimental effects on the number of spawned eggs and their embryonic development. Collectively, these data show for the first time that β-glucan can be safely used to promote the non-specific immunity in offspring of fishes.
Collapse
Affiliation(s)
- Chengyan Jiang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology Ocean University of China, Qingdao 266003, China; College of Life Science and Technology, Hong He University, Mengzi, Yunnan 661100, China
| | - Peng Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology Ocean University of China, Qingdao 266003, China
| | - Mengyang Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology Ocean University of China, Qingdao 266003, China
| | - Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
18
|
Green TJ, Speck P, Geng L, Raftos D, Beard MR, Helbig KJ. Oyster viperin retains direct antiviral activity and its transcription occurs via a signalling pathway involving a heat-stable haemolymph protein. J Gen Virol 2016; 96:3587-3597. [PMID: 26407968 DOI: 10.1099/jgv.0.000300] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Little is known about the response of non-model invertebrates, such as oysters, to virus infection. The vertebrate innate immune system detects virus-derived nucleic acids to trigger the type I IFN pathway, leading to the transcription of hundreds of IFN-stimulated genes (ISGs) that exert antiviral functions. Invertebrates were thought to lack the IFN pathway based on the absence of IFN or ISGs encoded in model invertebrate genomes. However, the oyster genome encodes many ISGs, including the well-described antiviral protein viperin. In this study, we characterized oyster viperin and showed that it localizes to caveolin-1 and inhibits dengue virus replication in a heterologous model. In a second set of experiments, we have provided evidence that the haemolymph from poly(I : C)-injected oysters contains a heat-stable, protease-susceptible factor that induces haemocyte transcription of viperin mRNA in conjunction with upregulation of IFN regulatory factor. Collectively, these results support the concept that oysters have antiviral systems that are homologous to the vertebrate IFN pathway.
Collapse
Affiliation(s)
- Timothy J Green
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.,Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Lu Geng
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - David Raftos
- Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Michael R Beard
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - Karla J Helbig
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| |
Collapse
|