1
|
Gong X, Li M, Zhang L, Huang S, Wang G. Identification and functional analysis of myeloid differentiation factor 88 (MyD88) in early development of Haliotis diversicolor. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109085. [PMID: 37722440 DOI: 10.1016/j.fsi.2023.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a universal adaptor protein and plays an important role in the signal transduction of Toll like receptors (TLR) family. In this study, the MyD88 gene from the Haliotis diversicolor (hdMyD88) was identified. The full-length cDNA of hdMyD88 has a 1927 base pairs (bp), with an open reading frame of 1314 bp encoding 437 amino acids including a death domain (DD) at the N-terminus and TIR domain at the C-terminus which are typical features of MyD88 family proteins. Three conserved boxes are also found in the hdMyD88, which are similar to MyD88 in vertebrates. The expression levels of hdMyD88 mRNA at different early embryonic developmental stages of abalone were measured by qPCR revealed that their constitutive expression at all developmental stages analyzed with the considerably highest values at 8 cell stage and the lowest level at the trochosphere stage. Additionally, the mRNA expression of hdMyD88 decreased significantly (P < 0.05) after MyD88-dsRNA soak in the stage of trochosphere and veliger than EGFP-dsRNA group and blank control group. Whole embryo in situ hybridization showed that the positive signals of hdMyD88 were in visceral mass of trochophore larvae and veliger larvae. These results indicate hdMyD88 may could respond to pathogenic infection and may play an important role in early innate immunity in the process of abalone larval development.
Collapse
Affiliation(s)
- Xiaoting Gong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Min Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shiyu Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
2
|
Luo Q, Lv X, Yang L, Zheng W, Xu T, Sun Y. Long non-coding RNA LTCONS8875 regulates innate immunity by up-regulating IRAK4 in Miichthys miiuy (miiuy croaker). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104653. [PMID: 36736935 DOI: 10.1016/j.dci.2023.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In recent years, many studies have shown that long non-coding RNAs (lncRNAs) can regulate many biochemical processes, such as cell growth, proliferation, and immune response, which have attracted great attention. There are relatively many studies on lncRNA in mammals, while the research on lncRNA in lower vertebrates has just begun. In this study, we found a lncRNA, lncRNA LTCONS8875, related to innate immune response in Miichthys miiuy (miiuy croaker). Our results showed that lncRNA LTCONS8875 can up-regulate the expression of IRAK4 at the mRNA and protein levels, and significantly increase the production of inflammatory factors under LPS stimulation. Our research also confirmed that lncRNA LTCONS8875 plays an active role in regulating inflammation, cell proliferation, and cell viability. In summary, this research results showed that lncRNA LTCONS8875 can as an active regulatory role of innate immunity in miiuy croaker by up-regulating the expression of IRAK4, providing some insights for understanding the network mechanism of non-coding regulation of fish immunity.
Collapse
Affiliation(s)
- Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
3
|
Wang C, Chen Q, Tang M, Wei T, Zou J. Effects of TLR2/4 signalling pathway in western mosquitofish (Gambusia affinis) after Edwardsiella tarda infection. JOURNAL OF FISH DISEASES 2023; 46:299-307. [PMID: 36811195 DOI: 10.1111/jfd.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Gambusia affinis is regarded as an important animal model. Edwardsiella tarda is one of the most serious pathogens affecting aquaculture. The study explores the effects of TLR2/4 partial signalling pathway in G. affinis of E. tarda infection. The study collected the brain, liver, and intestine after E. tarda LD50 and 0.85% NaCl solution challenge at different times (0 h, 3 h, 9 h, 18 h, 24 h, and 48 h). In these three tissues, the mRNA levels of PI3K, AKT3, IRAK4, TAK1, IKKβ, and IL-1β were substantially enhanced (p < .05) then returned to normal levels. Additionally, Rac1 and MyD88 in liver had different trend with other genes in brain and intestine, which displayed significantly indifference. The overexpression of IKKβ, and IL-1β indicated that E. tarda also caused immune reaction in intestine and liver, which would be consistent with delayed edwardsiellosis, which causes intestinal lesions and liver and kidney necrosis. Additionally, MyD88 plays a smaller role than IRAK4 and TAK1 in this signalling pathways. This study could enrich the understanding of the immune mechanism of the TLR2/4 signalling pathway in fish and might help to prescribe preventive measures against E. tarda to prevent infectious diseases in fish.
Collapse
Affiliation(s)
- Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qingshi Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Manfei Tang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Tianli Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Qi Z, Xu Y, Liu Y, Zhang Q, Wang Z, Mei J, Wang D. Transcriptome analysis of largemouth bass (Micropterus salmoides) challenged with LPS and polyI:C. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108534. [PMID: 36649809 DOI: 10.1016/j.fsi.2023.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Largemouth bass (Micropterus salmoides) is a worldwide commercially important aquatic species. In recent years, pathogenic diseases cause great economic losses and hinder the industry of largemouth bass. To further understand the immune response against pathogens in largemouth bass, splenic transcriptome libraries of largemouth bass were respectively constructed at 12 h post-challenged with phosphate-buffered saline (PBS), lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (polyI:C) by using RNA sequencing technology (RNA-seq). RNA libraries were constructed using 9 RNA splenic samples isolated from three biological replicates of the three groups and sequenced on the DNBSEQ platform. A total number of 86,306 unigenes were obtained. Through pairwise comparisons among the three groups, we identified 11,295 different expression genes (DEGs) exhibiting significant differences at the transcript level. There were 7, 7, and 13 signal pathways were significantly enriched in LPS-PBS comparison, polyI:C-PBS comparison, and LPS-polyI:C comparison, respectively, indicating that the immune response to different pathogens was distinct in largemouth bass. To the best of our knowledge, this is the first report on the immune response of largemouth bass against different pathogen-associated molecular patterns (PAMPs) stimuli using transcriptomic analysis. Our results provide a valuable resource and new insights to understanding the immune characteristics of largemouth bass against different pathogens.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| | - Yang Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yuhao Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Dezhong Wang
- Sheyang Kangyu Aquatic Products Technology Co., Ltd, Yancheng, Jiangsu Province, 224300, China
| |
Collapse
|
5
|
Alradi MF, Lu S, Wang L, Han Z, Elradi SA, Khogali MK, Liu X, Wei X, Chen K, Li S, Feng C. Characterization and functional analysis of a myeloid differentiation factor 88 in Ostrinia furnacalis Guenée larvae infected by Bacillus thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104489. [PMID: 35781013 DOI: 10.1016/j.dci.2022.104489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a pivotal adapter protein involved in activating nuclear factor NF-κB of the Toll pathway in insect innate immunity. MyD88 has been extensively studied in vertebrates and Drosophila. However, the information ascribed to MyD88 in Lepidoptera is scarce. In the present study, an Ostrinia furnacalis MyD88 (OfMyD88) cDNA was cloned and functionally characterized (GenBank accession no. MN906311). The complete cDNA sequence of OfMyD88 is 804 bp, and contains a 630 bp open reading frame encoding 209 amino acid residues. OfMyD88 has the death domain (DD), an intermediate domain, and the Toll/interleukin 1 receptor (TIR) domain. OfMyD88 was widely expressed in immune-related tissues such as hemocytes, fat body, midgut, and integument, with the highest expression level in hemocytes, and the lowest expression level in integument. To clarify the immune function of MyD88, O. furnacalis larvae were challenged with Bacillus thuringiensis (Bt) through feeding. Bt oral infection had significantly up-regulated the expression of OfMyD88 and immune genes, including PPO2 (prophenoloxidase 2), Attacin, Gloverin, Cecropin, Moricin, GRP3 (β-1, 3-Glucan recognition protein 3), and Lysozyme, and increased the activities of PO and lysozyme in hemolymph of O. furnacalis larvae. Knockdown of OfMyD88 by RNA interference suppressed the expression levels of immune related genes, but not PPO2 in the larvae orally infected with Bt, suggesting that OfMyD88 is involved in defending against Bt invasion through the Toll signaling pathway, but does not affect the PPO expression in O. furnacalis larvae.
Collapse
Affiliation(s)
- Mohamed F Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Medical Entomology, College of Public and Environmental Health, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sana A Elradi
- Department of Physiology, College of Medicine, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuzhong Li
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
6
|
Zhang R, Liu Y, Wang W, Xu Y, Wang Z, Zhong H, Tang C, Wang J, Sun H, Mao H, Yan J. A novel interleukin-1 receptor-associated kinase 4 from blunt snout bream (Megalobrama amblycephala) is involved in inflammatory response via MyD88-mediated NF-κB signal pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 127:23-34. [PMID: 35661767 DOI: 10.1016/j.fsi.2022.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a crucial role in the Toll-like receptor/IL-1R signal pathway, which mediates the downstream signal transduction involved in innate and adaptive immunity. In the present study, an IRAK4 homologue (named as MaIRAK4) from blunt snout bream (Megalobrama amblycephala) was cloned and characterized. The open reading frame (ORF) of MaIRAK4 contains 1422 nucleotides, encoding a putative protein of 473 amino acids. Protein structural analysis revealed that MaIRAK4 has an N-terminal death domain (DD) and a central kinase domain (S_TKc), similar to those of mammals and other fishes. Multiple sequence alignment demonstrated that MaIRAK4 is highly homologous with that of grass carp (97.67%). The qRT-PCR analysis showed that MaIRAK4 expressed widely in all examined tissues, including heart, liver, spleen, kidney, head-kidney, gill, intestine and muscle, with the highest expression in the liver and spleen. After stimulation with LPS, MaIRAK4 expression upregulated significantly and reached a peak at 6 h and 12 h post LPS stimulation in the spleen and head-kidney, respectively. After challenge with Aeromonas hydrophila, MaIRAK4 expression peaked at 48 h and 72 h in spleen/head-kidney and liver, respectively. These results implied that MaIRAK4 is involved in the host defense against bacterial infection. Subcellular localization analysis indicated that MaIRAK4 distributed in the cytoplasm. Co-immunoprecipitation and subcellular co-localization assay revealed that MaIRAK4 can combine with MaMyD88 through DD domain. MaIRAK4 overexpression can induce slightly the NF-κB promoter activity in HEK 293 cells. However, the activity of NF-κB promoter was dramatically enhanced after co-transfection with MaIRAK4 and MaMyD88 plasmids. The results showed that MaIRAK4 was involved in NF-κB signal pathway mediated by maMyD88. The expression level of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α) decreased significantly after the siRNA-mediated knockdown of MaIRAK4. Together, these results suggest that MaIRAK4 plays an important function in the innate immunity of M. amblycephala by inducing cytokines expression.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Yang Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Wenjun Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Yandong Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Zuzhen Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Huan Zhong
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Hongyang Sun
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Haibin Mao
- Department of Biology Education, ZhouNan High School, Changsha, 410008, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China.
| |
Collapse
|
7
|
Tang X, Yang M, Liu J, Zheng L, Xu D, Chi C, Lv Z, Liu H. Identification, functional characterization and expression pattern of myeloid differentiation factor 88 (MyD88) in Nibea albiflora. FISH & SHELLFISH IMMUNOLOGY 2022; 124:380-390. [PMID: 35477097 DOI: 10.1016/j.fsi.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Myeloid differentiation factor 88 (MyD88), composed of an N-terminal death domain and a C-terminal Toll/interleukin (IL)-IR homology domain, is a key connector protein in the TLR signal transduction pathway. In this study a novel isoform of MyD88 in Nibea albiflora (named as NaMyD88) was identified and functionally characterized (GenBank accession no. MN384261.1). Its complete cDNA sequence was 1672 bp and contained an open reading frame of 879 bp encoding 292 amino acid residues, which was similar to its teleost fish counterparts in the length. The theoretical molecular mass was 33.63 kDa and the isoelectric point was 5.24. BLASTp analysis suggested that the deduced amino acids sequence of NaMyD88 shared high identity to the known MyD88, for instance, 94.77% identity with Collichthys lucidus. Sequence analysis showed that NaMyD88 protein was consistent with MyD88 protein of other species at three conserved domains, N-terminal DD, short middle domain and C-terminal TIR, and the TIR domain contained three highly conserved motifs: Box1, Box2, and Box3. NaMyD88 and red fluorescent protein (Dsred) were fused and expressed in the cytoplasm of the epithelioma papulosum cyprini (EPC cells). The NaTLR9-TIR-EGFP fusion protein, which was obtained in our previous studies, showed green fluorescence and mainly distributed in the cytoplasm. After co-transfection, NaMyD88-Dsred and NaTLR9-TIR-EGFP obviously overlapped and displayed orange-yellow color. The results showed that the homologous MyD88-Dsred could interact with NaTLR9-TIR-EGFP. Based on this result pcMV-NaMyD88-TIR-Myc plasmids and the pcDNA3.1-NaTLR9-TIR-flag were constructed and co-transfected into 293T cells for the immunoprecipitation test. According to Western blot, the protein eluted by Flag-beads could be detected by anti-Flag-tag antibody and anti-Myc tag antibody respectively, while the protein without NaTLR9-TIR could not be found, which further proved that TLR and MyD88 could interact each other. The prokaryotic plasmid of MyD88-TIR domain was constructed, expressed in BL21 (DE3) and purified by Ni-NAT super flow resin conforming to the expected molecular weight of 27 kDa with the corresponding active sites for its conferring protein-protein interaction functions. Real-time fluorescence quantitative PCR showed that NaMyD88 could be expressed in intestine, stomach, liver, kidney, gill, heart and spleen, with the highest in the kidney, and it was up-regulated after being infected with Polyinosinic:polycytidylic acid - Poly (I:C) and Pseudomonas plecoglossicida, which showed that NaMyD88 was involved in the immune response of N.albiflora. These data afforded a basis for understanding the role of NaMyD88 in the TLR signaling pathway of N.albiflora.
Collapse
Affiliation(s)
- Xiuqin Tang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Meijun Yang
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jiaxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Libing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, PR China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
8
|
Wang KL, Chen SN, Li L, Huo HJ, Nie P. Functional characterization of four TIR domain-containing adaptors, MyD88, TRIF, MAL, and SARM in mandarin fish Siniperca chuatsi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104110. [PMID: 33933533 DOI: 10.1016/j.dci.2021.104110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Toll/interleukin-1 receptor (TIR) domain-containing adaptors, serve as pivotal signal transduction molecules in Toll-like receptor (TLR) signalling pathway to mediate downstream signalling cascades. In this study, four TIR-domain containing adaptors, MyD88, TRIF, MAL and SARM, were identified in mandarin fish Siniperca chuatsi, and they all contain TIR domains, of which MyD88 and SARM had high sequence homology with their vertebrate homologues. The expression analysis at mRNA level indicated that these genes were ubiquitously distributed in different tissues, being high in immune- and mucosa-related tissues such as head-kidney and intestine. The transcripts of these adaptor genes were up-regulated by poly(I:C) and LPS stimulation in isolated head-kidney lymphocytes (HKLs) of mandarin fish. Fluorescence microscopy revealed that all these molecules were localized in cytoplasm, and further investigations showed that the over-expression of MyD88, TRIF and MAL activated the NF-κB, ISRE or type Ι IFN promoters and inhibited SVCV replication, whereas their antiviral effects were significantly impaired when co-transfected with SARM. It was also confirmed by co-immunoprecipitation (Co-IP) that SARM interacts separately with MyD88, TRIF and MAL, and MAL interacts with MyD88. However, the regulatory mechanisms of these adaptors involved in signalling pathways of different TLRs should be of interest for further research.
Collapse
Affiliation(s)
- Kai Lun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Hui Jun Huo
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
9
|
Sahoo BR. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR). Int J Biol Macromol 2020; 161:1602-1617. [PMID: 32755705 PMCID: PMC7396143 DOI: 10.1016/j.ijbiomac.2020.07.293] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
Innate immunity driven by pattern recognition receptor (PRR) protects the host from invading pathogens. Aquatic animals like fish where the adaptive immunity is poorly developed majorly rely on their innate immunity modulated by PRRs like toll-like receptors (TLR) and NOD-like receptors (NLR). However, current development to improve the fish immunity via TLR/NLR signaling is affected by a poor understanding of its mechanistic and structural features. This review discusses the structure of fish TLRs/NLRs and its interaction with pathogen associated molecular patterns (PAMPs) and downstream signaling molecules. Over the past one decade, significant progress has been done in studying the structure of TLRs/NLRs in higher eukaryotes; however, structural studies on fish innate immune receptors are undermined. Several novel TLR genes are identified in fish that are absent in higher eukaryotes, but the function is still poorly understood. Unlike the fundamental progress achieved in developing antagonist/agonist to modulate human innate immunity, analogous studies in fish are nearly lacking due to structural inadequacy. This underlies the importance of exploring the structural and mechanistic details of fish TLRs/NLRs at an atomic and molecular level. This review outlined the mechanistic and structural basis of fish TLR and NLR activation.
Collapse
|
10
|
Liu S, Zhou A, Xie S, Sun D, Zhang Y, Sun Z, Chen Y, Zou J. Immune-related genes expression analysis of Western mosquitofish (Gambusia affinis) challenged with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 102:92-100. [PMID: 32276038 DOI: 10.1016/j.fsi.2020.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The great Gambusia affinis (G. affinis) is considered as an important animal model to study the endocrine disruption, ecological behavior, and environmental pollutant. The present study aims to build a new promising infection model with Aeromonas hydrophila (A. hydrophila) in aquaculture. The mRNA expression of Rac1, MyD88, IRAK4, TAK1, IKKβ, and IL-1β in G. affinis were significance higher (P < 0.05) in the liver of G. affinis than that of brain and intestine. And the PI3K mRNA expression level was significant lower (P < 0.05) in the intestine than that of brain and liver. The mRNA levels of AKT3 were significant higher (P < 0.05) in the brain than that of liver and intestine. And then the brain, liver, and intestine were collected at different time points (0 h, 3 h, 9 h, 18 h, 24 h, 48 h) after post injection of LD50 of A. hydrophila. The 0.85% NaCl was used as a negative control for the LD50 of A. hydrophila. The RT-PCR results showed that mRNA expressions of TLR2/4 pathway downstream genes MyD88, IRAK4, TAK1, Rac1, IKKβ, and IL-1β were firstly significantly up-regulated (P < 0.05) and were then backed to the 0 h group levels in three tissues. In contrast, mRNA expressions of TLR2/4 pathway downstream genes PI3K and AKT3 were firstly significantly decreased (P < 0.05) and were then increased to the 0 h group levels in brain and intestine. In summary, the results indicated that A. hydrophila could cause inflammatory reaction in intestinal and brain. In addition, the liver showed a provocative reaction when infected with A. hydrophila.
Collapse
Affiliation(s)
- Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolin Xie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Di Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhuolin Sun
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanfeng Chen
- School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Zhang X, Xu X, Shen Y, Fang Y, Zhang J, Bai Y, Gu S, Wang R, Chen T, Li J. Myeloid differentiation factor 88 (Myd88) is involved in the innate immunity of black carp (Mylopharyngodon piceus) defense against pathogen infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:220-229. [PMID: 31494279 DOI: 10.1016/j.fsi.2019.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is an important transduction protein in the Toll-like receptor signaling pathway. In this study, we identified the cDNA of the MpMyD88 gene in black carp. We found that MpMyD88 was widely distributed in the tissues tested and showed significant immune responses both in vitro and in vivo after stimulation with bacterial and pathogen-associated molecular patterns. After MpMyD88 overexpression/silencing, proinflame-matory cytokines (TNF-α, IFN-α, IL-6, and IL-8) also showed significant up-regulation/down-regulation. Moreover, we found that the antibacterial ability of cells over-expressing MpMyD88 was significantly stronger than that of control cells, while that of silenced MpMyD88 was significantly lower than that in control cells. Besides, we found that the overexpression of MpMyD88 significantly increased the activity of NF-κB. These results indicate that MpMyD88 plays an important role in the innate immune response.
Collapse
Affiliation(s)
- Xueshu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yuan Fang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jiahua Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Shuting Gu
- Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources, Suzhou Shenhang Eco-technology Development Limited Company, Suzhou, PR China
| | - Rongquan Wang
- Key Laboratory of Conventional Freshwater Fish Breeding and Health Culture Technology Germplasm Resources, Suzhou Shenhang Eco-technology Development Limited Company, Suzhou, PR China
| | - Tiansheng Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
12
|
Zhu KC, Guo HY, Zhang N, Guo L, Liu BS, Jiang SG, Zhang DC. Functional characterization of interferon regulatory factor 2 and its role in the transcription of interferon a3 in golden pompano Trachinotus ovatus (Linnaeus 1758). FISH & SHELLFISH IMMUNOLOGY 2019; 93:90-98. [PMID: 31326586 DOI: 10.1016/j.fsi.2019.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Similar to mammals, fish possess interferon (IFN) regulatory factor 2 (IRF2)-dependent type I IFN responses. Nevertheless, the detailed mechanism through which IRF2 regulates type I IFNa3 remains largely unknown. In the present study, we first identified two genes from golden pompano (Trachinotus ovatus), IRF2 (ToIRF2) and IFNa3 (ToIFNa3), in the IFN/IRF-based signalling pathway. The open reading frame (ORF) sequence of ToIRF2 encoded 335 amino acids possessing four typical characteristic domains, including a conserved DNA-binding domain (DBD), an interferon association domain 2 (IAD2), a transcriptional activation domain (TAD), and a transcriptional repression domain (TRD). Furthermore, transcripts of ToIRF2 were significantly upregulated after stimulation by polyinosinic: polycytidylic acid [poly (I:C)], lipopolysaccharide (LPS) and flagellin in immune-related tissues (blood, liver, and head-kidney). Moreover, to investigate whether ToIRF2 was a regulator of ToIFNa3, promoter analysis was performed. The results showed that the region from -896 bp to -200 bp is defined as the core promoter using progressive deletion mutations of IFNa3. Additionally, ToIRF2 overexpression led to a clear time-dependent enhancement of ToIFNa3 promoter expression in HEK293T cells. Mutation analyses indicated that the activity of the ToIFNa3 promoter significantly decreased after targeted mutation of M4/5 binding sites. Electrophoretic mobile shift assays (EMSAs) verified that IRF2 interacted with the binding site of the ToIFNa3 promoter region to regulate ToIFNa3 transcription. Last, the promoter activity of ToIFNa3-2 was more responsive to treatment with poly (I:C) than LPS and flagellin. Furthermore, overexpression of ToIRF2 in vitro obviously increased the expression of several IFN/IRF-based signalling pathway genes after poly (I:C) abduction. In conclusion, the present study provides the first evidence of the positive regulation of ToIFNa3 transcription by ToIRF2 and contributes to a better understanding of the transcriptional mechanisms of ToIRF2 in fish.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
13
|
Qi P, Huang H, Guo B, Liao Z, Liu H, Tang Z, He Y. A novel interleukin-1 receptor-associated kinase-4 from thick shell mussel Mytilus coruscus is involved in inflammatory response. FISH & SHELLFISH IMMUNOLOGY 2019; 84:213-222. [PMID: 30308290 DOI: 10.1016/j.fsi.2018.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Interleukin-1 receptor-associated kinase-4 (IRAK4) is considered as the most upstream kinase of IRAKs and plays a vital role in Toll-like receptor/Interleukin-1 receptor (TLR/IL-1R) signal transduction. In the present study, IRAK4 from thick shell mussel Mytilus coruscus (McIRAK4) was identified and characterized. McIRAK4 showed the most similarity to its counterparts in bivalves. The conserved death domain (DD) and catalytic domain of serine/threonine kinases (STKc) were predicted in all examined IRAK4s. McIRAK4 transcripts were constitutively expressed in all examined tissues with the higher expression level in immune related tissues, and were significantly induced in haemocytes upon lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (poly I:C) challenge. Further, the expression of McIRAK4 was obviously repressed by dsRNA mediated RNA interference (RNAi), meanwhile the proinflammatory cytokines TNF-alpha and IL17 were down-regulated while the antiinflammatory cytokine TGF-β was up-regulated. Additionally, McIRAK4 showed a global cytoplasmic localization in HEK293T cells through fluorescence microscopy. These results collectively indicated that McIRAK4 is one member of IRAK4 subfamily and might play the potential signal transducer role in inflammatory response. The present study provides supplement for TLR-mediated signaling pathway triggered by pathogenic invasions in thick shell mussel, and contributes to the clarification of the innate immune response in molluscs.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China.
| | - Huanqing Huang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yuehua He
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| |
Collapse
|
14
|
Huang WS, Wang ZX, Liang Y, Nie P, Huang B. Characterization of MyD88 in Japanese eel, Anguilla japonica. FISH & SHELLFISH IMMUNOLOGY 2018; 81:374-382. [PMID: 30016685 DOI: 10.1016/j.fsi.2018.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/01/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a key adaptor protein required for the signaling of all Toll-like receptors except TLR3, which results to the interaction of activated TLR complexes via C-terminal TIR domain and the binding of downstream kinase via N-terminal death domain. In this study, the MyD88 gene from the Japanese eel (Anguilla japonica) was identified. The open reading frame of AjMyD88 was 918 bp in length, encoding a protein composed of conserved N-terminal death domain and C-terminal TIR domain, respectively. Multiple alignment revealed highly conserved sites across all examined vertebrate lineages in death and TIR domains. Site-directed mutagenesis and luciferase analysis revealed that the W78A, L91A and L95A mutations in death domain had modest impairment of their ability in activating NF-κB promoter. The expression level of AjMyD88 was investigated by real-time PCR in response to poly I:C stimulation and Edwardsiella tarda infection. Significantly increased MyD88 expression was observed at early phase in all tested tissues/organs in response to E. tarda infection and slight increase was detected in intestine and gill at 16 hpi and in head kidney, spleen and liver at 24 hpi after poly I:C stimulation. Immunofluorescence staining revealed that AjMyD88 is present as condensed forms in the cytoplasm. Taken together, sequence characterization, gene expression and cellular distribution data obtained in this study suggest that AjMyD88, similar to its mammalian ortholog, plays an important role in eel immune response against bacteria.
Collapse
Affiliation(s)
- W S Huang
- College of Fisheries, Jimei University, Xiamen, 361021, China; Fujian Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen, 361005, China
| | - Z X Wang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Y Liang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - P Nie
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - B Huang
- College of Fisheries, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
15
|
Zhao XM, Chu XH, Liu Y, Liu QN, Jiang SH, Zhang DZ, Tang BP, Zhou CL, Dai LS. A myeloid differentiation factor 88 gene from yellow catfish Pelteobagrus fulvidraco and its molecular characterization in response to polyriboinosinic polyribocytidylic acid and lipopolysaccharide challenge. Int J Biol Macromol 2018; 120:1080-1086. [PMID: 30176326 DOI: 10.1016/j.ijbiomac.2018.08.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
Abstract
Myeloid differentiation factor 88 (MyD88) is an adaptor protein of Toll-like receptor (TLR) signalling pathways that activates the innate immune system. Herein, MyD88 was identified in the economically important freshwater fish Pelteobagrus fulvidraco. The complete 2156 bp PfMyD88 cDNA includes a 147 bp 5'-untranslated region (UTR), a 1133 bp 3'-UTR, and an open reading frame (ORF) of 876 bp encoding a 291 residue protein containing Death and Toll/interleukin-1 receptor (TIR) domains. The deduced protein sequence shares 88.8%, 73.8% and 59.3% identity with orthologs in Ictalurus punctatus, Danio rerio and Homo sapiens, respectively. qRT-PCR revealed expression in all tested tissues, highest in trunk kidney, followed by spleen, and lowest in muscle. After challenge with lipopolysaccharide (LPS) or polyriboinosinic polyribocytidylic acid (Poly I:C), PfMyD88 expression was up-regulated in blood, liver, head kidney and spleen. Thus, PfMyD88 acts in innate immunity in P. fulvidraco.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Xiao-Hua Chu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China.
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China.
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224051, People's Republic of China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China.
| |
Collapse
|
16
|
Huo L, Bao M, Lv Z, Chi C, Wang T, Liu H. Identification, functional characterization and expression pattern of myeloid differentiation factor 88 (MyD88) in Sepiella japonica. FISH & SHELLFISH IMMUNOLOGY 2018; 79:112-119. [PMID: 29727723 DOI: 10.1016/j.fsi.2018.04.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is an adaptor protein involved in the interleukin-1 receptor and Toll-like receptor-induced activation of nuclear factor-κB (NF-κB). In this study a novel isoform of MyD88 in Sepiella japonica (SjMyD88) was cloned and functionally characterized (GenBank accession no. AQY56781.1). The complete cDNA sequence of SjMyD88 was 1912 bp and contained a 1017 bp open reading frame encoding 338 amino acid residues, which was similar to its mollusk orthologues in the length. BLASTp analysis suggested the deduced amino acids sequence of SjMyD88 shared high identity to the known MyD88, for instance, 64% identity with Octopus bimaculoides. Sequence analysis revealed two conserved domains, the N-terminal DD and the C-terminal TIR domain appeared in SjMyD88, which was consistent with MyD88 proteins from other species. The fusion expression of SjMyD88 and green fluorescent protein (EGFP) in HEK293 cells was conducted and cytoplasm localization was detected. Meanwhile, the TIR-pmCherry fusion protein showed red fluorescence and mainly distributed in the cytoplasm. After cotransfection MyD88-EGFP and TIR-pmCherry red obviously overlapped and changed to yellowish green. The results suggested that there was the interaction between homologous TIR-pmcherry and MyD88-EGFP. Tissues expression profiles analysis showed that SjMyD88 ubiquitously expressed in all tested tissues with the highest expression in the gills and livers except reproductive related tissue, and it was significantly induced in livers under LPS stress. These data provide insight into the roles of SjMyD88 in the TLR signaling pathway of S. japonica in response to pathogenic bacteria.
Collapse
Affiliation(s)
- Liping Huo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Miaomiao Bao
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Changfeng Chi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
17
|
Priyathilaka TT, Bathige SDNK, Lee S, Lee J. Molecular identification and functional analysis of two variants of myeloid differentiation factor 88 (MyD88) from disk abalone (Haliotis discus discus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:113-127. [PMID: 29074103 DOI: 10.1016/j.dci.2017.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a crucial adaptor protein of the Toll-like receptor (TLR)- and interleukin 1 receptor-mediated signaling pathways and is involved in a diverse array of inflammatory responses via NF-κB activation. In the present study, two MyD88 variants were identified from disk abalone (Haliotis discus discus) and designated AbMyD88-2 and AbMyD88-X. The deduced AbMyD88-2 and AbMyD88-X comprised 433 and 354 amino acids with predicted molecular masses of 48.85 kDa and 40.17 kDa, respectively. AbMyD88-2 and AbMyD88-X possessed typical MyD88 domain structural features including an N-terminal death domain (DD) and C-terminal toll interleukin 1 receptor (TIR) domain similar to those in mammals. Expression analysis of AbMyD88-2 and AbMyD88-X mRNA at different early embryonic developmental stages of abalone by qPCR revealed that their constitutive expression at all developmental stages analyzed with the considerably higher values at the 16-cell (AbMyD88-2) and morula stages (AbMyD88-X). In unchallenged disk abalones, AbMyD88-2 was highly expressed in muscles, while AbMyD88-X mRNA was predominantly transcribed in hemocytes. Moreover, AbMyD88-2 and AbMyD88-X mRNA were differentially modulated in abalone hemocytes after a challenge with live bacteria (Vibrio parahaemolyticus, Listeria monocytogenes), virus (viral hemorrhagic septicemia virus), and pathogen-associated molecular patterns (lipopolysaccharides and Poly I:C). Overexpression of AbMyD88-2 and AbMyD88-X in HEK293T cells induced the activation of the NF-κB promoter. AbMyD88-2 and AbMyD88-X involvement in inflammatory responses was characterized by their overexpression in RAW264.7 murine macrophage cells. These results revealed comparatively higher NO (Nitric oxide) production, induction of inflammatory mediator genes (iNOS and COX2), and proinflammatory genes (IL1β, IL6 and TNFα) expression in abalone MyD88s-overexpressing cells than in mock control in the presence or absence of LPS stimulation. Altogether, these results suggest that existence of a MyD88-dependent like signaling pathway in disk abalone and that both AbMyD88-2 and AbMyD88-X might be involved in innate immune and inflammatory responses.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|