1
|
Liu K, Grover M, Trusch F, Vagena-Pantoula C, Ippolito D, Barkoulas M. Paired C-type lectin receptors mediate specific recognition of divergent oomycete pathogens in C. elegans. Cell Rep 2024; 43:114906. [PMID: 39460939 DOI: 10.1016/j.celrep.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Innate immune responses can be triggered upon detection of pathogen- or damage-associated molecular patterns by host receptors that are often present on the surface of immune cells. While invertebrates like Caenorhabditis elegans lack professional immune cells, they still mount pathogen-specific responses. However, the identity of host receptors in the nematode remains poorly understood. Here, we show that C-type lectin receptors mediate species-specific recognition of divergent oomycetes in C. elegans. A CLEC-27/CLEC-35 pair is essential for recognition of the oomycete Myzocytiopsis humicola, while a CLEC-26/CLEC-36 pair is required for detection of Haptoglossa zoospora. Both clec pairs are transcriptionally regulated through a shared promoter by the conserved PRD-like homeodomain transcription factor CEH-37/OTX2 and act in sensory neurons and the anterior intestine to trigger a protective immune response in the epidermis. This system enables redundant tissue sensing of oomycete threats through canonical CLEC receptors and host defense via cross-tissue communication.
Collapse
Affiliation(s)
- Kenneth Liu
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Manish Grover
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Franziska Trusch
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | | | | | | |
Collapse
|
2
|
Lei M, Tan Y, Tu H, Tan W. Neuronal basis and diverse mechanisms of pathogen avoidance in Caenorhabditis elegans. Front Immunol 2024; 15:1353747. [PMID: 38751431 PMCID: PMC11094273 DOI: 10.3389/fimmu.2024.1353747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pathogen avoidance behaviour has been observed across animal taxa as a vital host-microbe interaction mechanism. The nematode Caenorhabditis elegans has evolved multiple diverse mechanisms for pathogen avoidance under natural selection pressure. We summarise the current knowledge of the stimuli that trigger pathogen avoidance, including alterations in aerotaxis, intestinal bloating, and metabolites. We then survey the neural circuits involved in pathogen avoidance, transgenerational epigenetic inheritance of pathogen avoidance, signalling crosstalk between pathogen avoidance and innate immunity, and C. elegans avoidance of non-Pseudomonas bacteria. In this review, we highlight the latest advances in understanding host-microbe interactions and the gut-brain axis.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Mladineo I, Rončević T, Gerdol M, Tossi A. Helminthic host defense peptides: using the parasite to defend the host. Trends Parasitol 2023; 39:345-357. [PMID: 36890022 DOI: 10.1016/j.pt.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ivona Mladineo
- Laboratory of Functional Helminthology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology BC CAS, Branišovska 31, Česke Budejovice 37005, Czech Republic.
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
4
|
Ford SA, Drew GC, King KC. Immune-mediated competition benefits protective microbes over pathogens in a novel host species. Heredity (Edinb) 2022; 129:327-335. [PMID: 36352206 PMCID: PMC9708653 DOI: 10.1038/s41437-022-00569-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Microbes that protect against infection inhabit hosts across the tree of life. It is unclear whether and how the host immune system may affect the formation of new protective symbioses. We investigated the transcriptomic response of Caenorhabditis elegans following novel interactions with a protective microbe (Enterococcus faecalis) able to defend against infection by pathogenic Staphylococcus aureus. We have previously shown that E. faecalis can directly limit pathogen growth within hosts. In this study, we show that colonisation by protective E. faecalis caused the differential expression of 1,557 genes in pathogen infected hosts, including the upregulation of immune genes such as lysozymes and C-type lectins. The most significantly upregulated host lysozyme gene, lys-7, impacted the competitive abilities of E. faecalis and S. aureus when knocked out. E. faecalis has an increased ability to resist lysozyme activity compared to S. aureus, suggesting that the protective microbe could gain a competitive advantage from this host response. Our finding that protective microbes can benefit from immune-mediated competition after introduction opens up new possibilities for biocontrol design and our understanding of symbiosis evolution. Crosstalk between the host immune response and microbe-mediated protection should favour the continued investment in host immunity and avoid the potentially risky evolution of host dependence.
Collapse
Affiliation(s)
- Suzanne A Ford
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Georgia C Drew
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
5
|
Ju S, Chen H, Wang S, Lin J, Ma Y, Aroian RV, Peng D, Sun M. C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens. Commun Biol 2022; 5:643. [PMID: 35773333 PMCID: PMC9246835 DOI: 10.1038/s42003-022-03589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.
Collapse
Affiliation(s)
- Shouyong Ju
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqiao Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanli Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School Worcester, Worcester, MA, 01605-2377, USA
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Para-Hydroxybenzyl Alcohol Delays the Progression of Neurodegenerative Diseases in Models of Caenorhabditis elegans through Activating Multiple Cellular Protective Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8986287. [PMID: 35401930 PMCID: PMC8989581 DOI: 10.1155/2022/8986287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022]
Abstract
The traditional Chinese medicine Gastrodia elata (commonly called “Tianma” in Chinese) has been widely used in the treatment of rheumatism, epilepsy, paralysis, headache, and dizziness. Phenolic compounds, such as gastrodin, para-hydroxybenzyl alcohol (HBA), p-hydroxybenzaldehyde, and vanillin are the main bioactive components isolated from Gastrodia elata. These compounds not only are structurally related but also share similar pharmacological activities, such as antioxidative and anti-inflammatory activities, and effects on the treatment of aging-related diseases. Here, we investigated the effect of para-hydroxybenzyl alcohol (HBA) on neurodegenerative diseases and aging in models of Caenorhabditis elegans (C. elegans). Our results showed that HBA effectively delayed the progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease in models of C. elegans. In addition, HBA could increase the average lifespan of N2 worms by more than 25% and significantly improve the age-related physiological functions of worms. Moreover, HBA improved the survival rate of worms under stresses of oxidation, heat, and pathogenic bacteria. Further mechanistic investigation revealed that HBA could activate FOXO/DAF-16 and SKN-1 to regulate antioxidative and xenobiotic metabolism pathway. HBA could also activate HSF-1 to regulate proteostasis maintenance pathway, mitochondrial unfolded stress response, endoplasmic stress response and autophagy pathways. The above results suggest that HBA activated multiple cellular protective pathways to increase stress resistance and protect against aging and aging-related diseases. Overall, our study indicates that HBA is a potential candidate for future development of antiaging pharmaceutical application.
Collapse
|
7
|
Orientin Prolongs the Longevity of Caenorhabditis elegans and Postpones the Development of Neurodegenerative Diseases via Nutrition Sensing and Cellular Protective Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8878923. [PMID: 35237385 PMCID: PMC8885179 DOI: 10.1155/2022/8878923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
Abstract
Age is the major risk factor for most of the deadliest diseases. Developing small molecule drugs with antiaging effects could improve the health of aged people and retard the onset and progress of aging-associated disorders. Bioactive secondary metabolites from medicinal plants are the main source for development of medication. Orientin is a water-soluble flavonoid monomer compound widely found in many medicinal plants. Orientin inhibits fat production, antioxidation, and anti-inflammatory activities. In this study, we explored whether orientin could affect the aging of C. elegans. We found that orientin improved heat, oxidative, and pathogenic stress resistances through activating stress responses, including HSF-1-mediated heat shock response, SKN-1-mediated xenobiotic and oxidation response, mitochondria unfolded responses, endoplasmic unfolded protein response, and increased autophagy activity. Orientin also could activate key regulators of the nutrient sensing pathway, including AMPK and insulin downstream transcription factor FOXO/DAF-16 to further improve the cellular health status. The above effects of orientin reduced the accumulation of toxic proteins (α-synuclein, β-amyloid, and poly-Q) and delayed the onset of neurodegenerative disorders in AD, PD, and HD models of C. elegans and finally increased the longevity and health span of C. elegans. Our results suggest that orientin has promising antiaging effects and could be a potential natural source for developing novel therapeutic drugs for aging and its related diseases.
Collapse
|
8
|
Lubisch M, Moyzio S, Kaiser CS, Krafeld I, Leusder D, Scholz M, Hoepfner L, Hippler M, Liebau E, Kahl J. Using Caenorhabditis elegans to produce functional secretory proteins of parasitic nematodes. Acta Trop 2022; 225:106176. [PMID: 34627755 DOI: 10.1016/j.actatropica.2021.106176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022]
Abstract
The expression of antigens in their immunologically-active form remains a challenge, both in the analysis of regulatory pathways exploited by parasitic nematodes or in the development of vaccines. Despite the success of native proteins to induce protective immunity, recombinant proteins expressed in bacteria, yeast or insect cells offer only limited protective capacities, presumably due to incorrect folding or missing complex posttranslational modifications. The present study investigates the feasibility of using the free-living nematode Caenorhabditis elegans as an alternative expression system for proteins found in the secretome of parasitic nematodes. Exemplified by the expression of the extracellular superoxide dismutase from Haemonchus contortus (HcSODe) and the extracellular and glycosylated glutathione S-transferase from the filarial parasite Onchocerca volvulus (OvGST1), we continue our efforts to improve production and purification of recombinant proteins expressed in C. elegans. We demonstrate that sufficient quantities of functional proteins can be expressed in C. elegans for subsequent immunological and biochemical studies.
Collapse
Affiliation(s)
- Milena Lubisch
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| | - Sven Moyzio
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| | - Charlotte Sophia Kaiser
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| | - Isabel Krafeld
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| | - Dustin Leusder
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| | - Martin Scholz
- Plant Biochemistry and Biotechnology, Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| | - Lara Hoepfner
- Plant Biochemistry and Biotechnology, Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| | - Michael Hippler
- Plant Biochemistry and Biotechnology, Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| | - Eva Liebau
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany.
| | - Janina Kahl
- Department of Molecular Physiology, Institute of Animal Physiology, Westfälische Wilhelms-University, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
9
|
Pujol N, Ewbank JJ. C. elegans: out on an evolutionary limb. Immunogenetics 2021; 74:63-73. [PMID: 34761293 DOI: 10.1007/s00251-021-01231-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
The natural environment of the free-living nematode Caenorhabditis elegans is rich in pathogenic microbes. There is now ample evidence to indicate that these pathogens exert a strong selection pressure on C. elegans, and have shaped its genome, physiology, and behaviour. In this short review, we concentrate on how C. elegans stands out from other animals in terms of its immune repertoire and innate immune signalling pathways. We discuss how C. elegans often detects pathogens because of their effects on essential cellular processes, or organelle integrity, in addition to direct microbial recognition. We illustrate the extensive molecular plasticity that is characteristic of immune defences in C. elegans and highlight some remarkable instances of lineage-specific innovation in innate immune mechanisms.
Collapse
Affiliation(s)
- Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France.
| | - Jonathan J Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
10
|
Kloock A, Peters L, Rafaluk-Mohr C. Sex Matters: Effects of Sex and Mating in the Presence and Absence of a Protective Microbe. Front Cell Infect Microbiol 2021; 11:713387. [PMID: 34692559 PMCID: PMC8529166 DOI: 10.3389/fcimb.2021.713387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
In most animals, female investment in offspring production is greater than for males. Lifetime reproductive success (LRS) is predicted to be optimized in females through extended lifespans to maximize reproductive events by increased investment in immunity. Males, however, maximize lifetime reproductive success by obtaining as many matings as possible. In populations consisting of mainly hermaphrodites, optimization of reproductive success may be primarily influenced by gamete and resource availability. Microbe-mediated protection (MMP) is known to affect both immunity and reproduction, but whether sex influences the response to MMP remains to be explored. Here, we investigated the sex-specific differences in survival, behavior, and timing of offspring production between feminized hermaphrodite (female) and male Caenorhabditis elegans following pathogenic infection with Staphylococcus aureus with or without MMP by Enterococcus faecalis. Overall, female survival decreased with increased mating. With MMP, females increased investment into offspring production, while males displayed higher behavioral activity. MMP was furthermore able to dampen costs that females experience due to mating with males. These results demonstrate that strategies employed under pathogen infection with and without MMP are sex dependent.
Collapse
Affiliation(s)
- Anke Kloock
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Lena Peters
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
11
|
Radeke LJ, Herman MA. Take a Walk to the Wild Side of Caenorhabditis elegans-Pathogen Interactions. Microbiol Mol Biol Rev 2021; 85:e00146-20. [PMID: 33731489 PMCID: PMC8139523 DOI: 10.1128/mmbr.00146-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microbiomes form intimate functional associations with their hosts. Much has been learned from correlating changes in microbiome composition to host organismal functions. However, in-depth functional studies require the manipulation of microbiome composition coupled with the precise interrogation of organismal physiology-features available in few host study systems. Caenorhabditis elegans has proven to be an excellent genetic model organism to study innate immunity and, more recently, microbiome interactions. The study of C. elegans-pathogen interactions has provided in depth understanding of innate immune pathways, many of which are conserved in other animals. However, many bacteria were chosen for these studies because of their convenience in the lab setting or their implication in human health rather than their native interactions with C. elegans In their natural environment, C. elegans feed on a variety of bacteria found in rotting organic matter, such as rotting fruits, flowers, and stems. Recent work has begun to characterize the native microbiome and has identified a common set of bacteria found in the microbiome of C. elegans While some of these bacteria are beneficial to C. elegans health, others are detrimental, leading to a complex, multifaceted understanding of bacterium-nematode interactions. Current research on nematode-bacterium interactions is focused on these native microbiome components, both their interactions with each other and with C. elegans We will summarize our knowledge of bacterial pathogen-host interactions in C. elegans, as well as recent work on the native microbiome, and explore the incorporation of these bacterium-nematode interactions into studies of innate immunity and pathogenesis.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
12
|
Pees B, Yang W, Kloock A, Petersen C, Peters L, Fan L, Friedrichsen M, Butze S, Zárate-Potes A, Schulenburg H, Dierking K. Effector and regulator: Diverse functions of C. elegans C-type lectin-like domain proteins. PLoS Pathog 2021; 17:e1009454. [PMID: 33793670 PMCID: PMC8051790 DOI: 10.1371/journal.ppat.1009454] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 04/16/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022] Open
Abstract
In C. elegans, 283 clec genes encode a highly diverse family of C-type lectin-like domain (CTLD) proteins. Since vertebrate CTLD proteins have characterized functions in defense responses against pathogens and since expression of C. elegans clec genes is pathogen-dependent, it is generally assumed that clec genes function in C. elegans immune defenses. However, little is known about the relative contribution and exact function of CLEC proteins in C. elegans immunity. Here, we focused on the C. elegans clec gene clec-4, whose expression is highly upregulated by pathogen infection, and its paralogs clec-41 and clec-42. We found that, while mutation of clec-4 resulted in enhanced resistance to the Gram-positive pathogen Bacillus thuringiensis MYBt18247 (Bt247), inactivation of clec-41 and clec-42 by RNAi enhanced susceptibility to Bt247. Further analyses revealed that enhanced resistance of clec-4 mutants to Bt247 was due to an increase in feeding cessation on the pathogen and consequently a decrease in pathogen load. Moreover, clec-4 mutants exhibited feeding deficits also on non-pathogenic bacteria that were in part reflected in the clec-4 gene expression profile, which overlapped with gene sets affected by starvation or mutation in nutrient sensing pathways. However, loss of CLEC-4 function only mildly affected life-history traits such as fertility, indicating that clec-4 mutants are not subjected to dietary restriction. While CLEC-4 function appears to be associated with the regulation of feeding behavior, we show that CLEC-41 and CLEC-42 proteins likely function as bona fide immune effector proteins that have bacterial binding and antimicrobial capacities. Together, our results exemplify functional diversification within clec gene paralogs. C-type lectin-like domain (CTLD) containing proteins fulfill various and fundamental tasks in the human and mouse immune system. Genes encoding CTLD proteins are present in all animal genomes, in some cases in very large numbers and highly diversified. While the function of several vertebrate CTLD proteins is well characterized, experimental evidence of an immune function of most invertebrate CTLD proteins is missing, although their role in immunity is usually assumed. We here explore the immune function of three related CTLD proteins in the model nematode Caenorhabditis elegans. We find that they play diverse roles in C. elegans immunity, functioning as antimicrobial immune effector proteins that are important for defense against pathogen infection and probably directly interact with bacteria, but also regulators of feeding behavior that more indirectly affect C. elegans pathogen resistance. Such insight into the functional consequence of invertebrate CTLD protein diversification contributes to our understanding of the evolution of innate and invertebrate immune systems.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Department of Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Anke Kloock
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Carola Petersen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Department of Comparative Immunobiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Lena Peters
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Li Fan
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Meike Friedrichsen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabrina Butze
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Alejandra Zárate-Potes
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
13
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
14
|
Baiocchi T, Anesko K, Mercado N, Park H, Kin K, Strickhouser-Monzon B, Robles P, Bowman C, Wang H, Sternberg PW, Dillman AR. Signaling by AWC Olfactory Neurons Is Necessary for Caenorhabditis elegans' Response to Prenol, an Odor Associated with Nematode-Infected Insects. Genetics 2020; 216:145-157. [PMID: 32680884 PMCID: PMC7463287 DOI: 10.1534/genetics.120.303280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Chemosensation plays a role in the behaviors and life cycles of numerous organisms, including nematodes. Many guilds of nematodes exist, ranging from the free-living Caenorhabditis elegans to various parasitic species such as entomopathogenic nematodes (EPNs), which are parasites of insects. Despite ecological differences, previous research has shown that both EPNs and C. elegans respond to prenol (3-methyl-2-buten-1-ol), an odor associated with EPN infections. However, it is unclear how C. elegans responds to prenol. By utilizing natural variation and genetic neuron ablation to investigate the response of C. elegans to prenol, we found that the AWC neurons are involved in the detection of prenol and that several genes (including dcap-1, dcap-2, and clec-39) influence response to this odorant. Furthermore, we identified that the response to prenol is mediated by the canonically proposed pathway required for other AWC-sensed attractants. However, upon testing genetically diverse isolates, we found that the response of some strains to prenol differed from their response to isoamyl alcohol, suggesting that the pathways mediating response to these two odorants may be genetically distinct. Further, evaluations leveraging natural variation and genome wide association revealed specific genes that influence nematode behavior and provide a foundation for future studies to better understand the role of prenol in nematode behavioral ecology.
Collapse
Affiliation(s)
- Tiffany Baiocchi
- Department of Nematology, University of California, Riverside, California 92521
| | - Kyle Anesko
- Department of Nematology, University of California, Riverside, California 92521
| | - Nathan Mercado
- Department of Nematology, University of California, Riverside, California 92521
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Kassandra Kin
- Department of Nematology, University of California, Riverside, California 92521
| | | | - Priscila Robles
- Department of Nematology, University of California, Riverside, California 92521
| | - Christian Bowman
- Department of Nematology, University of California, Riverside, California 92521
| | - Han Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, California 92521
| |
Collapse
|
15
|
Dierking K, Pita L. Receptors Mediating Host-Microbiota Communication in the Metaorganism: The Invertebrate Perspective. Front Immunol 2020; 11:1251. [PMID: 32612612 PMCID: PMC7308585 DOI: 10.3389/fimmu.2020.01251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
Multicellular organisms live in close association with a plethora of microorganism, which have a profound effect on multiple host functions. As such, the microbiota and its host form an intimate functional entity, termed the metaorganism or holobiont. But how does the metaorganism communicate? Which receptors recognize microbial signals, mediate the effect of the microbiota on host physiology or regulate microbiota composition and homeostasis? In this review we provide an overview on the function of different receptor classes in animal host-microbiota communication. We put a special focus on invertebrate hosts, including both traditional invertebrate models such as Drosophila melanogaster and Caenorhabditis elegans and “non-model” invertebrates in microbiota research. Finally, we highlight the potential of invertebrate systems in studying mechanism of host-microbiota interactions.
Collapse
Affiliation(s)
- Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Lucía Pita
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
16
|
Lu M, Tan L, Zhou XG, Yang ZL, Zhu Q, Chen JN, Luo HR, Wu GS. Tectochrysin increases stress resistance and extends the lifespan of Caenorhabditis elegans via FOXO/DAF-16. Biogerontology 2020; 21:669-682. [PMID: 32506187 DOI: 10.1007/s10522-020-09884-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Aging is related to the lowered overall functioning and increased risk for various age-related diseases in humans. Tectochrysin is a flavonoid compound and rich in a traditional Chinese Medicine Alpinia oxyphylla Miq., which has antioxidant, anti-inflammatory, anti-cancer, anti-bacterial, anti-diarrhea, hepatoprotective, and neuro-protective effects. Therefore, we tested if tectochrysin had an effect on aging in Caenorhabditis elegans (C. elegans). Our results showed that tectochrysin could extend the lifespan of C. elegans by up to 21.0%, delay the age-related decline of body movement, improve high temperature-stress resistance and anti-infection capacity, and protected worms against Aβ1-42-induced toxicity. Tectochrysin could not extend the lifespan of the mutants from genes daf-2, daf-16, eat-2, aak-2, skn-1, and hsf-1. Tectochrysin could increase the expression of DAF-16 regulated genes. The extension of lifespan by tectochrysin requires FOXO/DAF-16 and HSF-1. Overall, our findings suggest that tectochrysin may have a potential effect on extending lifespan and age-related diseases.
Collapse
Affiliation(s)
- Min Lu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Lin Tan
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Xiao-Gang Zhou
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Zhong-Lin Yang
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Qing Zhu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Jian-Ning Chen
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Huai-Rong Luo
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Gui-Sheng Wu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, 319 Zhongshan Road, Luzhou, 646000, Sichuan, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
17
|
Van de Walle P, Geens E, Baggerman G, José Naranjo-Galindo F, Askjaer P, Schoofs L, Temmerman L. CEH-60/PBX regulates vitellogenesis and cuticle permeability through intestinal interaction with UNC-62/MEIS in Caenorhabditis elegans. PLoS Biol 2019; 17:e3000499. [PMID: 31675356 PMCID: PMC6824563 DOI: 10.1371/journal.pbio.3000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
Abstract
The onset of sexual maturity involves dramatic changes in physiology and gene expression in many animals. These include abundant yolk protein production in egg-laying species, an energetically costly process under extensive transcriptional control. Here, we used the model organism Caenorhabditis elegans to provide evidence for the spatiotemporally defined interaction of two evolutionarily conserved transcription factors, CEH-60/PBX and UNC-62/MEIS, acting as a gateway to yolk protein production. Via proteomics, bimolecular fluorescence complementation (BiFC), and biochemical and functional readouts, we show that this interaction occurs in the intestine of animals at the onset of sexual maturity and suffices to support the reproductive program. Our electron micrographs and functional assays provide evidence that intestinal PBX/MEIS cooperation drives another process that depends on lipid mobilization: the formation of an impermeable epicuticle. Without this lipid-rich protective layer, mutant animals are hypersensitive to exogenous oxidative stress and are poor partners for mating. Dedicated communication between the hypodermis and intestine in C. elegans likely supports these physiological outcomes, and we propose a fundamental role for the conserved PBX/MEIS interaction in multicellular signaling networks that rely on lipid homeostasis.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Antwerpen, Belgium
- VITO, Mol, Belgium
| | | | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|
18
|
Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Med Microbiol Immunol 2019; 209:1-13. [PMID: 31555911 DOI: 10.1007/s00430-019-00635-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
The morbidity and mortality associated with systemic fungal infections in humans cannot be underestimated. The nematode Caenorhabditis elegans has become popular for the in vivo study of the pathogenesis of human fungal pathogens and as an antifungal drug-screening tool. C. elegans offers many advantages as a model organism for the study of human fungal diseases, including lack of ethics requirements, easy maintenance in the laboratory, fully sequenced genome, availability of genetic mutants, and the possibility of liquid assays for high-throughput antifungal screening. Its major drawbacks include the inability to grow at 37 °C and absence of an adaptive immune response. However, several virulence factors involved in the pathogenesis of medically important fungal pathogens have been identified using the C. elegans model, consequently providing new leads for drug discovery and potential drug targets. We review the use of C. elegans as a model animal to understand the pathogenesis of medically important human fungal pathogens and the discovery of novel antifungal compounds. The review makes a case for C. elegans as a suitable invertebrate model for a plethora of practical applications in the investigation of fungal pathogenesis as well as its amenability for liquid-based high-throughput screening of potential antifungal compounds.
Collapse
|
19
|
Wang T, Ma G, Ang CS, Korhonen PK, Koehler AV, Young ND, Nie S, Williamson NA, Gasser RB. High throughput LC-MS/MS-based proteomic analysis of excretory-secretory products from short-term in vitro culture of Haemonchus contortus. J Proteomics 2019; 204:103375. [PMID: 31071474 DOI: 10.1016/j.jprot.2019.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022]
Abstract
Parasitic nematodes of humans, animals and plants have a major, adverse impact on global health and agricultural production worldwide. To cope with their surrounding environment in and the immune attack from the host, excretory-secretory (ES) proteins are released by nematodes to orchestrate or regulate parasite-host interactions. In the present study, we characterised the ES products from short-term (12 h) in vitro culture of different developmental stages/sexes of Haemonchus contortus (one of the most important parasitic nematodes of livestock animals worldwide) using a high throughput tandem mass-spectrometry, underpinned by the most recent genomic dataset. In total, 878 unique proteins from key developmental stages/sexes (third-stage and fourth-stage larvae, and female and male adults) were identified and quantified with high confidence. Bioinformatic analyses showed noteworthy ES protein alterations during the transition from the free-living to the parasitic phase, especially for proteins which are likely involved in nutrient digestion and acquisition as well as parasite-host interactions, such as proteolytic cascade-related peptidases, glycoside hydrolases, C-type lectins and sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7 (= SCP/TAPS) proteins. Our findings provide an avenue to better explore interactive processes between the host and this highly significant parasitic nematode, to underpin the search for novel drug and vaccine targets. SIGNIFICANCE: The present study represents a comprehensive proteomic analysis of the secretome of key developmental stages/sexes of H. contortus maintained in short-term in vitro culture. High throughput LC-MS/MS analysis of ES products allowed the identification of a large repertoire of proteins (secretome) and the establishment of a new proteomic database for H. contortus. The secretome of H. contortus undergoes substantial changes during the nematode's transition from free-living to parasitic stages, suggesting a constant adaptation to different environments outside of and within the host animal. Understanding the host-parasite relationship at the molecular level could assist significantly in the development of intervention strategies (i.e. novel drugs and vaccines) against H. contortus and related nematodes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
20
|
The genomic basis of Red Queen dynamics during rapid reciprocal host-pathogen coevolution. Proc Natl Acad Sci U S A 2018; 116:923-928. [PMID: 30598446 PMCID: PMC6338873 DOI: 10.1073/pnas.1810402116] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogens are omnipresent and by definition detrimental to their hosts. Pathogens thus exert high selection on their hosts, which, if adapting, can exert similar levels of selection on the pathogen, resulting in ongoing cycles of reciprocal adaptation between the antagonists. Such coevolutionary interactions have a central influence on the evolution of organisms. Surprisingly, we still know little about the exact selection dynamics and the genome regions involved. Our study uses a controlled experimental approach with an animal host to dissect coevolutionary selection. We find that distinct selective processes underlie rapid coadaptation in the two antagonists, including antagonistic frequency-dependent selection on toxin gene copy number in the pathogen, while the host response is likely influenced by changes in multiple genome regions. Red Queen dynamics, involving coevolutionary interactions between species, are ubiquitous, shaping the evolution of diverse biological systems. To date, information on the underlying selection dynamics and the involved genome regions is mainly available for bacteria–phage systems or only one of the antagonists of a eukaryotic host–pathogen interaction. We add to our understanding of these important coevolutionary interactions using an experimental host–pathogen model, which includes the nematode Caenorhabditis elegans and its pathogen Bacillus thuringiensis. We combined experimental evolution with time-shift experiments, in which a focal host or pathogen is tested against a coevolved antagonist from the past, present, or future, followed by genomic analysis. We show that (i) coevolution occurs rapidly within few generations, (ii) temporal coadaptation at the phenotypic level is found in parallel across replicate populations, consistent with antagonistic frequency-dependent selection, (iii) genomic changes in the pathogen match the phenotypic pattern and include copy number variations of a toxin-encoding plasmid, and (iv) host genomic changes do not match the phenotypic pattern and likely involve selective responses at more than one locus. By exploring the dynamics of coevolution at the phenotypic and genomic level for both host and pathogen simultaneously, our findings demonstrate a more complex model of the Red Queen, consisting of distinct selective processes acting on the two antagonists during rapid and reciprocal coadaptation.
Collapse
|
21
|
Pita L, Hoeppner MP, Ribes M, Hentschel U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci Rep 2018; 8:16081. [PMID: 30382170 PMCID: PMC6208332 DOI: 10.1038/s41598-018-34330-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
The innate immune system helps animals to navigate the microbial world. The response to microbes relies on the specific recognition of microbial-associated molecular patterns (MAMPs) by immune receptors. Sponges (phylum Porifera), as early-diverging animals, provide insights into conserved mechanisms for animal-microbe crosstalk. However, experimental data is limited. We adopted an experimental approach followed by RNA-Seq and differential gene expression analysis in order to characterise the sponge immune response. Two Mediterranean species, Aplysina aerophoba and Dysidea avara, were exposed to a “cocktail” of MAMPs (lipopolysaccharide and peptidoglycan) or to sterile artificial seawater (control) and sampled 1 h, 3 h, and 5 h post-treatment for RNA-Seq. The response involved, first and foremost, a higher number of differentially-expressed genes in A. aerophoba than D. avara. Secondly, while both species constitutively express a diverse repertoire of immune receptors, they differed in their expression profiles upon MAMP challenge. The response in D. avara was mediated by increased expression of two NLR genes, whereas the response in A. aerophoba involved SRCR and GPCR genes. From the set of annotated genes we infer that both species activated apoptosis in response to MAMPs while in A. aerophoba phagocytosis was additionally stimulated. Our study assessed for the first time the transcriptomic responses of sponges to MAMPs and revealed conserved and species-specific features of poriferan immunity as well as genes potentially relevant to animal-microbe interactions.
Collapse
Affiliation(s)
- Lucía Pita
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Marta Ribes
- Institute of Marine Science, CSIC, Barcelona, Spain
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Christian-Albrechts-University of Kiel (CAU), Kiel, Germany
| |
Collapse
|
22
|
Guo RM, Zhao CB, Li P, Zhang L, Zang SH, Yang B. Overexpression of CLEC18B Associates With the Proliferation, Migration, and Prognosis of Glioblastoma. ASN Neuro 2018; 10:1759091418781949. [PMID: 29914265 PMCID: PMC6024345 DOI: 10.1177/1759091418781949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
C-type lectin domain family 18 member B (CLEC18B), encoding a superfamily of CLEC, has been found to be expressed in some of cancer cells, which possibly indicates it associated with cancer. However, the defined functional characterizations of CLEC18B in glioblastoma multiforme (GBM) progression still remain unclear. To this end, clinical relevance of CLEC18B expression with GBM patients’ prognosis was analyzed both in The Cancer Genome Atlas dataset of 174 tissues and 40 GBM tumor tissues collected from our hospital by using the Kaplan–Meier survival and the Cox proportional hazard model. The role of CLEC18B in GBM was determined by loss-of-function assay using small interfering RNA approach in vitro. Functional and signaling analyses were also performed to understand how CLEC18B facilitated the aggressiveness of GBM at molecular and cellular levels using Cell Counting Kit-8 assay, wound-healing, transwell, and Western blot analyses. Results from our analyses showed that CLEC18B was markedly elevated in both GBM tissues and cells, and exhibited strong inverse correlation with overall survival in GBM patients. Moreover, CLEC18B was identified as an independent predictor of patient survival. Functionally, knockdown of CLEC18B inhibited the growth, migration, and invasion of GBM cells. Mechanistic studies revealed that silencing of CLEC18B resulted in downregulation of Wnt/β-catenin signaling activity. Collectively, our findings provide clinical, molecular, and cellular evidence of CLEC18B as a promising prognostic biomarker and therapeutic target for GBM.
Collapse
Affiliation(s)
- Rui-Ming Guo
- 1 Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Cheng-Bin Zhao
- 1 Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Peng Li
- 2 School of Life Sciences, Zhengzhou University, Henan, P.R. China
| | - Liang Zhang
- 3 Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Su-Hua Zang
- 3 Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| | - Bo Yang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Henan, P.R. China
| |
Collapse
|