1
|
Taxifolin Inhibits WSSV Infection and Transmission by Increasing the Innate Immune Response in Litopenaeus vannamei. Viruses 2022; 14:v14122731. [PMID: 36560735 PMCID: PMC9787842 DOI: 10.3390/v14122731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
An outbreak of white spot syndrome virus (WSSV) can hit shrimp culture with a devastating blow, and there are no suitable measures to prevent infection with the virus. In this study, the activity of active molecules from Chinese herbs against WSSV was evaluated and screened. Taxifolin had the highest rate (84%) of inhibition of the WSSV infection. The viral infectivity and genome copy number were reduced by 41% when WSSV virion was pretreated with taxifolin prior to shrimp infection. A continuous exchange of taxifolin significantly reduced the mortality of shrimp infected with WSSV. Due to the WSSV virion infectivity being affected by taxifolin, the horizontal transmission of the virus was blocked with an inhibition rate of up to 30%, which would further reduce the cost of a viral outbreak. Additionally, the viral genome copy number was also reduced by up to 63% in shrimp preincubated in taxifolin for 8 h. There may be a connection to the enhancement of innate immunity in shrimp that resulted in a 15% reduction in mortality for taxifolin-fed shrimp after the WSSV challenge. After dietary supplementation with taxifolin, the resistance of larvae to WSSV was improved, indicating that taxifolin may be a potential immunostimulant for shrimp to prevent WSD. Therefore, the results indicate that taxifolin has application potential for blocking a WSSV outbreak and reducing the loss of shrimp culture.
Collapse
|
2
|
Cao H, Zhang S, An J, Diao J, Xu L, Gai C. Rhodobacter azotoformans supplementation improves defense ability of Chinese mitten crab Eriocheir sinensis against citrobacteriosis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:991-998. [PMID: 36368632 DOI: 10.1016/j.fsi.2022.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Rhodobacter probiotics are considered as good alternatives to antibiotics for aquaculture. Yet the beneficial effects of Rhodobacter on Chinese mitten crab Eriocheir sinensis are still unclear, and more functions of Rhodobacter supplementation need to be clarified. In this study, a 60-day feeding trial was performed to investigate the protective effects of R. azotoformans against citrobacteriosis in E. sinensis by growth performance, serum immunity, hepatopancreatic antioxidant capability, intestinal flora, and resistance to Citrobacter freundii challenge assays. The results showed that R. azotoformans supplementation significantly and dose-dependently increased weight gain and specific growth rate as well as activities of serum immune and hepatopancreatic antioxidant enzymes, leading to notable improvement in the growth performance, serum immunity and hepatopancreatic antioxidant status of E. sinensis. Besides, R. azotoformans supplementation significantly enhanced intestinal microbial abundance and diversity in E. sinensis, and conferred significant protection of the crabs against C. freundii challenge with seven-day survival rates of 70.0%-100.0%. To the best of our knowledge, this is the first study to reveal the protective effects of R. azotoformans against citrobacteriosis in E. sinensis.
Collapse
Affiliation(s)
- Haipeng Cao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center for Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Shumeng Zhang
- Shanghai Engineering Research Center for Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian An
- Marine and Fisheries Development Promotion Center of Lianyungang City, Lianyungang, Jiangsu, 266104, China
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Science Research Institute of Shandong Province, Qingdao, 266104, China
| | - La Xu
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Science Research Institute of Shandong Province, Qingdao, 266104, China
| | - Chunlei Gai
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Science Research Institute of Shandong Province, Qingdao, 266104, China.
| |
Collapse
|
3
|
Cao H, Huang X, Gu Y, Zheng X, Xu L, Gai C. Protective effects of Bacillus licheniformis against Citrobacter freundii infection in Chinese mitten crab Eriocheir sinensis. J Invertebr Pathol 2022; 193:107805. [DOI: 10.1016/j.jip.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
4
|
Ravi M, Sudhakar T, Hari Haran S, Sudhakaran R, Stalin Dhas T. Nanoparticles based DNA vaccine in marine water crabs (Scylla serrata) for protection against white spot syndrome virus (WSSV). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Jiang N, Pan X, Gu Z, Liu W, Si K, Zhou Y, Zhou Y, Zhai L, Fan Y, Zeng L. Proliferation dynamics of WSSV in crayfish, Procambarus clarkii, and the host responses at different temperatures. JOURNAL OF FISH DISEASES 2019; 42:497-510. [PMID: 30742312 DOI: 10.1111/jfd.12942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The replication profile of white spot syndrome virus (WSSV) in crayfish, Procambarus clarkii, at different water temperature was investigated in this study. The WSSV detections were negative at 15 ± 1°C, and the natural infection ratio increased at 19 ± 1°C (24.2% ± 2.25%), reached 100% at 25 ± 1°C and decreased at 30 ± 1°C (93.2% ± 3.37%). The WSSV genome copies number was much higher at 25 ± 1°C (≥5 × 106.45 ± 0.35 /mg) than at 15 ± 1°C (≤5 × 101.13 ± 0.12 /mg), 19 ± 1°C (≤5 × 102.74 ± 0.48 /mg) and 32 ± 1°C (≤5 × 103.18 ± 0.27 /mg). Meanwhile, the significant transcription signals of immediate early gene ie1 and late gene vp28 and a large number of virus particles were detected in epitheliums of stomach, gut and gill, hepatopancreas, heart and muscle cells at 25 ± 1°C by using in situ hybridization (ISH) and transmission electron microscopy. The experimental infection of P. clarkii with WSSV infection showed reduced mortality and lower virus copies number at 19 ± 1°C (23.51% ± 0.84%, ≤5 × 103.41 ± 0.11 /mg) and 32 ± 1°C (38.42% ± 1.21%, ≤5 × 103.72 ± 0.13 /mg) compared to 25 ± 1°C (100%, ≥5 × 104.99 ± 0.24 /mg). The water temperature regulated the transcription of immune-related genes (crustin2, prophenoloxidase (proPO) and heat shock protein70 (Hsp70)), with some differences between WSSV treatments and control treatments. These results demonstrate that water temperature has effect on WSSV proliferation, which may due to transcriptional response of immune-related genes to temperature.
Collapse
Affiliation(s)
- Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiaoyi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Kaige Si
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yongze Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agriculture University, Wuhan, China
| | - Liwen Zhai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
6
|
Trang TT, Hung NH, Ninh NH, Knibb W, Nguyen NH. Genetic Variation in Disease Resistance Against White Spot Syndrome Virus (WSSV) in Liptopenaeus vannamei. Front Genet 2019; 10:264. [PMID: 30984244 PMCID: PMC6447704 DOI: 10.3389/fgene.2019.00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 03/08/2019] [Indexed: 01/20/2023] Open
Abstract
White Spot Syndrome Virus (WSSV) is the most damaging pathogen in terms of production and economic losses for the shrimp sector world-wide. Estimation of heritability for WSSV resistance was made in this study to obtain necessary parameter inputs for broadening the breeding objectives of an ongoing selective breeding programme for Whiteleg shrimp (Liptopenaeus vannamei) that has focussed exclusively on improving growth performance since 2014. The present study involved a disease challenge test experiment using a total of 15,000 shrimps from 150 full- and half-sib families (100 individuals per family). Survival rates were recorded at six different experimental periods: 1–3 days (S1), 1–5 days (S2), 1–7 days (S3), 1–9 days (S4), 1–12 days (S5), and 1–15 days (S6) and were used as measures of WSSV resistance. There was significant variation in WSSV resistance among families studied. Quantitative-real time PCR (qPCR) analysis showed that the amount of viral titer (viral load) was significantly lower in high than low resistance families. Analyses of heritability were carried out using linear mixed model (LMM) and threshold logistic generalized model (TLGM). Both linear and threshold models used showed that the heritability (h2) for WSSV resistance was moderate in the early infection phases (S1–S4), whilst a low h2 value was observed for survival after 12 and 15 days of the challenge test (S5 and S6). The transformed heritabilities for WSSV resistance ranged from 1 to 31% which were somewhat lower than those estimated on the liability scale. Genetic correlations between survival rates measured over six different days post-infection were high and positive (0.82–0.99). The phenotypic correlations ranged from 0.31 ± 0.01 to 0.97 ± 0.01. The genetic correlations between body weights and WSSV resistance were negative. Our results on the heritability and genetic correlations show that improvement of WSSV resistance can be achieved through selective breeding in this population of Whiteleg shrimp.
Collapse
Affiliation(s)
- Trinh Thi Trang
- Faculty of Science, Health, Education and engineering, GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Vietnam National University of Agriculture, Gia Lâm, Vietnam
| | - Nguyen Huu Hung
- Research Institute for Aquaculture No. 3, Nha Trang, Vietnam
| | - Nguyen Huu Ninh
- Research Institute for Aquaculture No. 3, Nha Trang, Vietnam
| | - Wayne Knibb
- Vietnam National University of Agriculture, Gia Lâm, Vietnam
| | | |
Collapse
|
7
|
Chen TT, Tan LR, Hu N, Dong ZQ, Hu ZG, Jiang YM, Chen P, Pan MH, Lu C. C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:54-60. [PMID: 29778904 DOI: 10.1016/j.jinsphys.2018.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Lysozymes is a ubiquitous immune effector that is widely distributed in both vertebrates and invertebrates. Previous reports have shown that lysozymes significantly inhibit viral infections in vertebrates. However, the antiviral effects of lysozymes in invertebrates remain unclear. Here, we investigated the role of lysozymes in Bombyx mori (B. mori) response to viral infection by overexpressing B. mori C-lysozyme (BmC-LZM) in larvae and cells. We found that BmC-LZM was up-regulated in cells in response to viral infection. Indeed, the overexpressing of BmC-LZM significantly inhibited viral replication in cells during late-stage infection. However, this effect was reversed by BmC-LZM mRNA. BmC-LZM was successfully overexpressed in B. mori strain 871 using Baculovirus Expression Vector System (BEVS). This overexpression markedly reduced viral proliferation and increased larval survival percentage. Thus, BmC-LZM inhibited viral replication both in vivo and in vitro, indicating that BmC-LZM is involved in the insect immune response to viral infection. Our results provide a basis for further applications of lysozymes.
Collapse
Affiliation(s)
- Ting-Ting Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Li-Rong Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ya-Ming Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|