1
|
Monsinjon T, Knigge T. Endocrine disrupters affect the immune system of fish: The example of the European seabass. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110303. [PMID: 40180203 DOI: 10.1016/j.fsi.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
An organism's fitness critically relies on its immune system to provide protection against parasites and pathogens. The immune system has reached its highest complexity in vertebrates, combining the highly specific adaptive with the non-specific innate immunity. In vertebrates, a complex system of steroid hormones regulates major physiological functions comprising energy metabolism, growth, reproduction and immune system performance. This allows the organism to allocate available energy according to life-history traits and environmental conditions, thus maintaining homeostasis and survival of the individual and of the population. Immune system activation must take into account the developmental stage and the nutritional state of the organism. It should respond adequately to different pathogens, but should not overperform or consume all resources for other physiological functions. This important trade-off between immunity and reproduction is balanced by oestrogen. Many of the thousands of chemicals released by humans into the environment, so-called xenobiotics, have the ability to disrupt normal endocrine function. Such endocrine-disrupting chemicals have been demonstrated to impair reproductive functions and to be responsible for numerous diseases in humans and wild life. Given that oestrogens are established modulators of immune cell populations, exogenous oestrogens and oestrogen mimics can modulate immune functions in aquatic animals, such as fish, potentially affecting wildlife and aquaculture. This review highlights the interaction of xenoestrogens with fish immunity. It particularly focusses on the thymus, a major primary immune organ, in the European seabass, Dicentrarchus labrax an important species, both for fisheries and aquaculture.
Collapse
Affiliation(s)
- Tiphaine Monsinjon
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France.
| | - Thomas Knigge
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France
| |
Collapse
|
2
|
Picchietti S, Pianese V, Fausto AM, Scapigliati G. The Mediterranean sea bass Dicentrarchus labrax: A marine model species in fish immunology. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110288. [PMID: 40120781 DOI: 10.1016/j.fsi.2025.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The Mediterranean sea bass, Dicentrarchus labrax, is a species of great interest due to the extensive knowledge accumulated about its immune system and the application of these findings in aquaculture health management. The available data indicate that sea bass has the morphological and immunological features typical of jawed vertebrates, with minor anatomical differences compared to evolutionarily older teleosts. Namely, all the master genes coding for Tc and Th T cells have been found to be expressed, together with related cytokine families, and Tc/Th activities can be investigated using in vitro models. The B lymphocytes produce IgM/IgT/IgD antibodies in response to antigenic/vaccine stimulation and maintain an IgM-B cell memory for antigens and vaccines. Mucosal and systemic immunity with associated leukocyte populations is present and functional, and it can be modulated by substances added to water or food. Studies on the ontogenesis of immune components defined precise points of lymphocyte development during larval life. Finally, the central nervous system of sea bass has been shown to contain resident lymphocytes, whose number can be modulated by pathogenic infection. Based on the available knowledge summarized in this review, it can be certainly assumed that the Dicentrarchus labrax is a valuable marine model species for studies in immunology and physiology of vertebrates.
Collapse
Affiliation(s)
- S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy.
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| |
Collapse
|
3
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
4
|
Zapater C, Moreira C, Knigge T, Monsinjon T, Gómez A, Pinto PIS. Evolutionary history and functional characterization of duplicated G protein-coupled estrogen receptors in European sea bass. J Steroid Biochem Mol Biol 2024; 236:106423. [PMID: 37939740 DOI: 10.1016/j.jsbmb.2023.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Across vertebrates, the numerous estrogenic functions are mainly mediated by nuclear and membrane receptors, including the G protein-coupled estrogen receptor (GPER) that has been mostly associated with rapid non-genomic responses. Although Gper-mediated signalling has been characterized in only few fish species, Gpers in fish appear to present more mechanistic functionalities as those of mammals due to additional gene duplicates. In this study, we ran a thorough investigation of the fish Gper evolutionary history in light of available genomes, we carried out the functional characterization of the two gper gene duplicates of European sea bass (Dicentrarchus labrax) using luciferase reporter gene transactivation assays, validated it with natural and synthetic estrogen agonists/antagonists and applied it to other chemicals of aquaculture and ecotoxicological interest. Phylogenetic and synteny analyses of fish gper1 and gper1-like genes suggest their duplication may have not resulted from the teleost-specific whole genome duplication. We confirmed that both sbsGper isoforms activate the cAMP signalling pathway and respond differentially to distinct estrogenic compounds. Therefore, as observed for nuclear estrogen receptors, both sbsGpers duplicates retain estrogenic activity although they differ in their specificity and potency (Gper1 being more potent and more specific than Gper1-like), suggesting a more conserved role for Gper1 than for Gper1-like. In addition, Gpers were able to respond to estrogenic environmental pollutants known to interfere with estrogen signalling, such as the phytoestrogen genistein and the anti-depressant fluoxetine, a point that can be taken into account in aquatic environment pollution screenings and chemical risk assessment, complementing previous assays for sea bass nuclear estrogen receptors.
Collapse
Affiliation(s)
- Cinta Zapater
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Catarina Moreira
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Thomas Knigge
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Tiphaine Monsinjon
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Ana Gómez
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Patrícia I S Pinto
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
5
|
Kernen L, Phan A, Bo J, Herzog EL, Huynh J, Segner H, Baumann L. Estrogens as immunotoxicants: 17α-ethinylestradiol exposure retards thymus development in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106025. [PMID: 34837781 DOI: 10.1016/j.aquatox.2021.106025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs) can cause alterations in sexual development and reproductive function of fish. Growing evidence suggests that EEDCs can also interfere with development and function of innate immunity of fish. The present study examined a potential disruptive effect of EEDCs at field-relevant concentrations on the development of adaptive immunity, more specifically the thymus. Zebrafish (Danio rerio) were exposed from fertilization until 64 days post-fertilization (dpf) to environmentally relevant (3 and 10 ng/L) concentrations of the synthetic estrogen 17α-ethinylestradiol (EE2). The exposure duration covered the period of initial thymus differentiation to maximum growth. Thymus development was assessed by histological and morphometric (thymus area) analysis, thymocyte number, and transcript levels of thymocyte marker genes. Additionally, transcript levels of the estrogen receptors (esr1 and esr2a) were determined. The EE2 exposure altered sexual development (gonad differentiation, transcript levels of hepatic vitellogenin and estrogen receptors) of zebrafish, as expected. At the same time, the EE2 treatment reduced the thymus growth (thymus area, thymocyte number) and transcript levels of thymus marker genes. The expression of the thymic estrogen receptors responded to the EE2 exposure but in a different pattern than the hepatic estrogen receptors. After the 64-day-exposure period, the juvenile fish were transferred into clean water for another 95 days to assess the reversibility of EE2-induced effects. The thymic alterations were found to be reversible in female zebrafish but persisted in males. The present study provides the first evidence that the development of the fish adaptive immune system is sensitive to EEDCs, and that this takes place at concentrations similar to those that disrupt sexual development.
Collapse
Affiliation(s)
- Larissa Kernen
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Audrey Phan
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361102, China
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - John Huynh
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Lisa Baumann
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Aquatic Ecology & Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Moreira C, Hétru J, Paiola M, Duflot A, Chan P, Vaudry D, Pinto PIS, Monsinjon T, Knigge T. Proteomic changes in the extracellular environment of sea bass thymocytes exposed to 17α-ethinylestradiol in vitro. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100911. [PMID: 34583305 DOI: 10.1016/j.cbd.2021.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/14/2021] [Accepted: 08/28/2021] [Indexed: 11/28/2022]
Abstract
The thymus is an important immune organ providing the necessary microenvironment for the development of a diverse, self-tolerant T cell repertoire, which is selected to allow for the recognition of foreign antigens while avoiding self-reactivity. Thymus function and activity are known to be regulated by sex steroid hormones, such as oestrogen, leading to sexual dimorphisms in immunocompetence between males and females. The oestrogenic modulation of the thymic function provides a potential target for environmental oestrogens, such as 17α-ethynylestradiol (EE2), to interfere with the cross-talk between the endocrine and the immune system. Oestrogen receptors have been identified on thymocytes and the thymic microenvironment, but it is unclear how oestrogens regulate thymic epithelial and T cell communication including paracrine signalling. Much less is known regarding intrathymic signalling in fish. Secretomics allows for the analysis of complex mixtures of immunomodulatory signalling factors secreted by T cells. Thus, in the present study, isolated thymocytes of the European sea bass, Dicentrarchus labrax, were exposed in vitro to 30 nM EE2 for 4 h and the T cell-secretome (i.e., extracellular proteome) was analysed by quantitative label-free mass-spectrometry. Progenesis revealed a total of 111 proteins differentially displayed between EE2-treated and control thymocytes at an α-level of 5% and a 1.3-fold change cut off (n = 5-6). The EE2-treatment significantly decreased the level of 90 proteins. Gene ontology revealed the proteasome to be the most impacted pathway. In contrast, the abundance of 21 proteins was significantly increased, with cathepsins showing the highest level of induction. However, no particular molecular pathway was significantly altered for these upregulated proteins. To the best of our knowledge, this work represents the first study of the secretome of the fish thymus exposed to the environmental oestrogen EE2, highlighting the impact on putative signalling pathways linked to immune surveillance, which may be of crucial importance for fish health and defence against pathogens.
Collapse
Affiliation(s)
- Catarina Moreira
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France
| | - Julie Hétru
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France
| | - Matthieu Paiola
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France; Department of Microbiology and Immunology, University of Rochester Medical Center, 14642 Rochester, NY, United States
| | - Aurélie Duflot
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France
| | - Philippe Chan
- Normandie Univ, UNIROUEN, PISSARO Proteomic Facility, IRIB, F-76820 Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), F-76183 Rouen, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, PISSARO Proteomic Facility, IRIB, F-76820 Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Inserm U1239, 76821 Mont-Saint-Aignan, France; Normandie Univ, UNIROUEN, Institute for Research and Innovation in Biomedicine (IRIB), F-76183 Rouen, France
| | - Patrícia I S Pinto
- Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, 8005-139 Faro, Portugal
| | - Tiphaine Monsinjon
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France
| | - Thomas Knigge
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600 Le Havre, France.
| |
Collapse
|
7
|
Moreira C, Paiola M, Duflot A, Varó I, Sitjà-Bobadilla A, Knigge T, Pinto P, Monsinjon T. The influence of 17β-oestradiol on lymphopoiesis and immune system ontogenesis in juvenile sea bass, Dicentrarchus labrax. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:104011. [PMID: 33460678 DOI: 10.1016/j.dci.2021.104011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
The female sex steroid 17β-oestradiol (E2) is involved in the regulation of numerous physiological functions, including the immune system development and performance. The role of oestrogens during ontogenesis is, however, not well studied. In rodents and fish, thymus maturation appears to be oestrogen-dependent. Nevertheless, little is known about the function of oestrogen in immune system development. To further the understanding of the role of oestrogens in fish immune system ontogenesis, fingerlings of European sea bass (Dicentrarchus labrax) were exposed for 30 days to 20 ng E2·L-1, at two ages tightly related to thymic maturation, i.e., 60 or 90 days post hatch (dph). The expression of nuclear and membrane oestrogen receptors was measured in the thymus and spleen, and the expression of several T cell-related gene markers was studied in both immune organs, as well as in the liver. Waterborne E2-exposure at 20.2 ± 2.1 (S.E.) ng·L-1 was confirmed by radioimmunoassay, leading to significantly higher E2-contents in the liver of exposed fish. The majority of gene markers presented age-dependent dynamics in at least one of the organs, confirming thymus maturation, but also suggesting a critical ontogenetic window for the implementation of liver resident γδ and αβ T cells. The oestrogen receptors, however, remained unchanged over the age and treatment comparisons with the exception of esr2b, which was modulated by E2 in the younger cohort and increased its expression with age in the thymus of the older cohort, as did the membrane oestrogen receptor gpera. These results confirm that oestrogen-signalling is involved in thymus maturation in European sea bass, as it is in mammals. This suggests that esr2b and gpera play key roles during thymus ontogenesis, particularly during medulla maturation. In contrast, the spleen expressed low or non-detectable levels of oestrogen receptors. The E2-exposure decreased the expression of tcrγ in the liver in the cohort exposed from 93 to 122 dph, but not the expression of any other immune-related gene analysed. These results indicate that the proliferation/migration of these innate-like T cell populations is oestrogen-sensitive. In regard to the apparent prominent role of oestrogen-signalling in the late thymus maturation stage, the thymic differentiation of the corresponding subpopulations of T cells might be regulated by oestrogen. To the best of our knowledge, this is the first study investigating the dynamics of both nuclear and membrane oestrogen receptors in specific immune organs in a teleost fish at very early stages of immune system development as well as to examine thymic function in sea bass after an exposure to E2 during ontogenesis.
Collapse
Affiliation(s)
- Catarina Moreira
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France
| | - Matthieu Paiola
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France; Department of Microbiology and Immunology, University of Rochester Medical Center, 14642, Rochester, NY, United States
| | - Aurélie Duflot
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France
| | - Inma Varó
- Instituto de Acuicultura Torre de La Sal, CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | | | - Thomas Knigge
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France
| | - Patrícia Pinto
- Centro de Ciências Do Mar (CCMAR), Universidade Do Algarve, 8005-139, Faro, Portugal
| | - Tiphaine Monsinjon
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600, Le Havre, France.
| |
Collapse
|
8
|
Paiola M, Moreira C, Hétru J, Duflot A, Pinto PIS, Scapigliati G, Knigge T, Monsinjon T. Prepubertal gonad investment modulates thymus function: evidence in a teleost fish. J Exp Biol 2021; 224:238091. [PMID: 33789987 DOI: 10.1242/jeb.238576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Thymus plasticity following gonadectomy or sex hormone replacement has long since exemplified sex hormone effects on the immune system in mammals and, to a lesser extent, in 'lower vertebrates', including amphibians and fish. Nevertheless, the underlying physiological significances as well as the ontogenetic establishment of this crosstalk remain largely unknown. Here, we used a teleost fish, the European sea bass, Dicentrarchus labrax, to investigate: (1) whether the regulation of thymus plasticity relies on resource trade-off with somatic growth and reproductive investment and (2) if the gonad-thymus interaction takes place during gonadal differentiation and development. Because gonadal development and, supposedly, thymus function in sea bass depend on environmental changes associated with the winter season, we evaluated thymus changes (foxn1 expression, and thymocyte and T cell content) in juvenile D. labrax raised for 1 year under either constant or fluctuating photoperiod and temperature. Importantly, in both conditions, intensive gonadal development following sex differentiation coincided with a halt of thymus growth, while somatic growth continued. To the best of our knowledge, this is the first study showing that gonadal development during prepuberty regulates thymus plasticity. This finding may provide an explanation for the initiation of the thymus involution related to ageing in mammals. Comparing fixed and variable environmental conditions, our work also demonstrates that the extent of the effects on the thymus, which are related to reproduction, depend on ecophysiological conditions, rather than being directly related to sexual maturity and sex hormone levels.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Julie Hétru
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| |
Collapse
|
9
|
Bjørgen H, Koppang EO. Anatomy of teleost fish immune structures and organs. Immunogenetics 2021; 73:53-63. [PMID: 33426583 PMCID: PMC7862538 DOI: 10.1007/s00251-020-01196-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The function of a tissue is determined by its construction and cellular composition. The action of different genes can thus only be understood properly when seen in the context of the environment in which they are expressed and function. We now experience a renaissance in morphological research in fish, not only because, surprisingly enough, large structures have remained un-described until recently, but also because improved methods for studying morphological characteristics in combination with expression analysis are at hand. In this review, we address anatomical features of teleost immune tissues. There are approximately 30,000 known teleost fish species and only a minor portion of them have been studied. We aim our review at the Atlantic salmon (Salmo salar) and other salmonids, but when applicable, we also present information from other species. Our focus is the anatomy of the kidney, thymus, spleen, the interbranchial lymphoid tissue (ILT), the newly discovered salmonid cloacal bursa and the naso-pharynx associated lymphoid tissue (NALT).
Collapse
Affiliation(s)
- Håvard Bjørgen
- Section of Anatomy, The Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, Norway
| | - Erling Olaf Koppang
- Section of Anatomy, The Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, Norway.
| |
Collapse
|
10
|
Kernen L, Rieder J, Duus A, Holbech H, Segner H, Bailey C. Thymus development in the zebrafish (Danio rerio) from an ecoimmunology perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:805-819. [PMID: 33306886 DOI: 10.1002/jez.2435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023]
Abstract
The thymus is present in all gnathostome vertebrates and is an essential organ for the adaptive immune system via the generation of functional mature T-cells. Over the life span of mammals, the thymus undergoes morphological and functional alterations, including an age-related involution, which in humans starts in early life. Life history tradeoffs have been suggested as possible reasons for thymus involution. While in teleost fish, only a few studies have investigated alterations of thymus structure and function over different life stages, resulting in a fragmented database. Here, we investigated the thymus growth of zebrafish (Danio rerio) from early life, throughout puberty and reproductive stage, up to 1-year-old. We assessed thymus growth by histological and morphometric analyses and thymocyte numbers. Thymus function was assessed by measuring the transcripts of the thymocyte marker genes, ikaros, tcrα, and tcrδ. Additionally, we analyzed gonad maturity and tail homogenate vitellogenin concentrations to align thymus status with the status of the reproductive system. Our results showed that the zebrafish thymus, in contrast to the human thymus, grew strongly during early life and puberty but started to undergo involution when the fish reached the reproductive age. The involution was characterized by reduced thymus area and thymocyte number, altered histoarchitecture, and decreasing thymocyte marker gene transcript levels. Our findings suggest that age-related changes of the zebrafish thymus do exist and could be partly explained in terms of resource tradeoffs, but also in terms of the ontogenetically late development of a functional adaptive immune system in teleosts.
Collapse
Affiliation(s)
- Larissa Kernen
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Annette Duus
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Christyn Bailey
- Fish Immunology and Pathology Group, Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| |
Collapse
|
11
|
Rehberger K, Wernicke von Siebenthal E, Bailey C, Bregy P, Fasel M, Herzog EL, Neumann S, Schmidt-Posthaus H, Segner H. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss. ENVIRONMENT INTERNATIONAL 2020; 142:105836. [PMID: 32563011 DOI: 10.1016/j.envint.2020.105836] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs), such as ethinylestradiol (EE2), are well studied for their impact on the reproductive system of fish. EEDCs may also impact the immune system and, as a consequence, the disease susceptibility of fish. It is currently not yet known whether the low concentrations of EEDCs that are able to disrupt the reproductive system of trout are effective in disrupting the immune system and the fish host resistance towards pathogens, too, or whether such immunodisruptive effects would occur only at higher EEDC concentrations. Therefore, in the present study we compare the effect thresholds of low 17α-ethinylestradiol concentrations (1.5 and 5.5 EE2 ng/L) on the reproductive system, the immune system, the energy expenditures and the resistance of juvenile rainbow trout (Oncorhynchus mykiss) against the parasite Tetracapsuloides bryosalmonae - the etiological agent of proliferative kidney disease (PKD) of salmonids. The parasite infection was conducted without injection and under low pathogen exposure concentrations. The disease development was followed over 130 days post infection - in the presence or absence of EE2 exposure. The results show that the long-term EE2 exposure affected, at both concentrations, reproductive parameters like the mRNA levels of hepatic vitellogenin and estrogen receptors. At the same concentrations, EE2 exposure modulated the immune parameters: mRNA levels of several immune genes were altered and the parasite intensity as well as the disease severity (histopathology) were significantly reduced in EE2-exposed fish compared to infected control fish. The combination of EE2 exposure and parasite infection was energetically costly, as indicated by the decreased values of the swim tunnel respirometry. Although further substantiation is needed, our findings suggest that EE2 exerts endocrine disruptive and immunomodulating activities at comparable effect thresholds, since reproductive and immune parameters were affected by the same, low EE2 concentrations.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Christyn Bailey
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Bregy
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Fasel
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvia Neumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Paiola M, Moreira C, Duflot A, Knigge T, Monsinjon T. Oestrogen differentially modulates lymphoid and myeloid cells of the European sea bass in vitro by specifically regulating their redox biology. FISH & SHELLFISH IMMUNOLOGY 2019; 86:713-723. [PMID: 30513382 DOI: 10.1016/j.fsi.2018.11.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 05/02/2023]
Abstract
Besides their obvious role in sex determination and reproduction, oestrogens display a prominent and complex immunomodulatory role across all vertebrates. To date, our knowledge on the oestrogenic immunomodulation in non-mammalian species is, however, scarce. In both teleosts and mammals, the direct immunomodulatory function of oestrogen is underscored by the presence of multiple oestrogen receptor subtypes in the various immune cells. For a better understanding of the regulatory processes, we investigated the oestrogen receptor expression in two major lymphoid organs of European sea bass: the head-kidney and the spleen. All oestrogen receptor subtypes, including nuclear and membrane oestrogen receptors, were present in both immune organs as well as in the isolated leucocytes. The same findings have been previously made for the thymus. To determine the oestrogen responsiveness of the different immune cell populations and to evaluate the importance of non-genomic and genomic pathways, we assessed the kinetics and the concentration dependent effects of 17β-oestradiol on isolated leucocytes from the head-kidney, the spleen and the thymus in vitro. Given the importance of reactive oxygen species as signalling and defence components in mammalian immune cells, the oxidative burst capacity, the redox status and the viability of both lymphoid and myeloid cells were measured by flow cytometry. The treatment with 17β-oestradiol specifically modulated these parameters depending on (1) the time kinetic, (2) the concentration of 17β-oestradiol, (3) the immune cell population (lymphoid and myeloid cells) as well as (4) the lymphoid organs from which they originated. The observed in vitro oestrogenic effects as well the presence of various oestrogen receptor subtypes in the immune cells of sea bass suggest a complex and direct oestrogenic action via multiple interconnected oestrogen-signalling pathways. Additionally, our study suggests that the oestrogenic regulation of the sea bass immune function involves a direct and tissue specific modulation of the immune cell redox biology comprising redox signalling, NADPH-oxidase activity and H2O2-permeability, thus changing oxidative burst capacity and immature T cell fate because oestrogen impacted thymocyte viability. Importantly, immune cells from both primary and secondary lymphoid organs have shown specific in vitro oestrogen-responsiveness. As established in mammals, oestrogen is likely to be specifically and directly involved in immature T cell differentiation and mature immunocompetent cell function in sea bass too.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France.
| |
Collapse
|
13
|
Cabas I, Chaves-Pozo E, Mulero V, García-Ayala A. Role of estrogens in fish immunity with special emphasis on GPER1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:102-110. [PMID: 30092317 DOI: 10.1016/j.dci.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
It is well accepted that estrogens, the primary female sex hormones, play a key role in modulating different aspects of the immune response. Moreover, estrogens have been linked with the sexual dimorphism observed in some immune disorders, such as chronic inflammatory and autoimmune diseases. Nevertheless, their effects are often controversial and depend on several factors, such as the pool of estrogen receptors (ERs) involved in the response. Their classical mode of action is through nuclear ERs, which act as transcription factors, promoting the regulation of target genes. However, it has long been noted that some of the estrogen-mediated effects cannot be explained by these classical receptors, since they are rapid and mediated by non-genomic signaling pathways. Hence, the interest in membrane ERs, especially in G protein-coupled estrogen receptor 1 (GPER1), has grown in recent years. Although the presence of nuclear ERs, and ER signaling, in immune cells in mammals and fish has been well documented, information on membrane ERs is much scarcer. In this context, the present manuscript aims to review our knowledge concerning the effect of estrogens on fish immunity, with special emphasis on GPER1. For example, the numerous tools developed over recent years allowed us to report for the first time that the regulation of fish granulocyte functions by estrogens through GPER1 predates the split of fish and tetrapods more than 450 million years ago, pointing to the relevance of estrogens as modulators of the immune responses, and the pivotal role of GPER1 in immunity.
Collapse
Affiliation(s)
- Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Alfonsa García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
14
|
Zapater C, Molés G, Muñoz I, Pinto PIS, Canario AVM, Gómez A. Differential involvement of the three nuclear estrogen receptors during oogenesis in European sea bass (Dicentrarchus labrax)†. Biol Reprod 2018; 100:757-772. [DOI: 10.1093/biolre/ioy227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/06/2018] [Accepted: 10/25/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cinta Zapater
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Gregorio Molés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Iciar Muñoz
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Patricia I S Pinto
- Centre of Marine Sciences (CCMAR), University of Algarve, Gambelas, Faro, Portugal
| | - Adelino V M Canario
- Centre of Marine Sciences (CCMAR), University of Algarve, Gambelas, Faro, Portugal
| | - Ana Gómez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| |
Collapse
|
15
|
Paiola M, Knigge T, Duflot A, Pinto PIS, Farcy E, Monsinjon T. Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:48-61. [PMID: 29408048 DOI: 10.1016/j.dci.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Emilie Farcy
- Montpellier University, UMR MARBEC (UM, CNRS, Ifremer, IRD), 34095 Montpellier, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France.
| |
Collapse
|
16
|
Effects of Sex Steroids on Fish Leukocytes. BIOLOGY 2018; 7:biology7010009. [PMID: 29315244 PMCID: PMC5872035 DOI: 10.3390/biology7010009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish.
Collapse
|