1
|
Yang C, Li J, Luo M, Zhou W, Xing J, Yang Y, Wang L, Rao W, Tao W. Unveiling the molecular mechanisms of Dendrobium officinale polysaccharides on intestinal immunity: An integrated study of network pharmacology, molecular dynamics and in vivo experiments. Int J Biol Macromol 2024; 276:133859. [PMID: 39009260 DOI: 10.1016/j.ijbiomac.2024.133859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Intestinal immunity plays a pivotal role in overall immunological defenses, constructing mechanisms against pathogens while maintaining balance with commensal microbial communities. Existing therapeutic interventions may lead to drug resistance and potential toxicity when immune capacity is compromised. Dendrobium officinale, a traditional Chinese medicine, contains components identified to bolster immunity. Employing network pharmacology strategies, this study identified constituents of Dendrobium officinale and their action targets in the TCMSP and Swiss Target Prediction databases, and compared them with intestinal immunity-related targets. Protein-protein interaction networks revealed the core targets of Dendrobium officinale polysaccharides, encompassing key pathways such as cell proliferation, inflammatory response, and immune reactions, particularly in association with the Toll-like receptor 4. Molecular docking and molecular dynamics simulation further confirmed the high affinity and stability between Dendrobium officinale polysaccharides and Toll-like receptor 4. In vivo experiments demonstrated that Dendrobium officinale polysaccharides modulates the expression of Toll-like receptor 4 and its downstream key proteins in the colonic mucosa of mice. Consequently, these findings suggest that Dendrobium officinale polysaccharides may serve as a potential modulator for intestinal immune functions, with its mechanism potentially related to the Toll-like receptor 4.
Collapse
Affiliation(s)
- Chenchen Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jingrui Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengfan Luo
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanyi Zhou
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianrong Xing
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Yang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lu Wang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Wenjia Rao
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wenyang Tao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Chaumont L, Collet B, Boudinot P. Double-stranded RNA-dependent protein kinase (PKR) in antiviral defence in fish and mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104732. [PMID: 37172664 DOI: 10.1016/j.dci.2023.104732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms of the innate immune system. Upon binding of viral double stranded RNA, a viral Pattern Associated Molecular Pattern (PAMP), PKR gets activated and phosphorylates the eukaryotic translation initiation factor 2α (eIF2α) resulting in a protein shut-down that limits viral replication. Since its discovery in the mid-seventies, PKR has been shown to be involved in multiple important cellular processes including apoptosis, proinflammatory and innate immune responses. Viral subversion mechanisms of PKR underline its importance in the antiviral response of the host. PKR activation pathways and its mechanisms of action were previously identified and characterised mostly in mammalian models. However, fish Pkr and fish-specific paralogue Z-DNA-dependent protein kinase (Pkz) also play key role in antiviral defence. This review gives an update on the current knowledge on fish Pkr/Pkz, their conditions of activation and their implication in the immune responses to viruses, in comparison to their mammalian counterparts.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
3
|
Sun ZC, Jiang Z, Xu X, Li M, Zeng Q, Zhu Y, Wang S, Li Y, Tian XL, Hu C. Fish Paralog Proteins RNASEK-a and -b Enhance Type I Interferon Secretion and Promote Apoptosis. Front Immunol 2021; 12:762162. [PMID: 34880860 PMCID: PMC8645942 DOI: 10.3389/fimmu.2021.762162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022] Open
Abstract
Type I interferon and apoptosis elicit multifaceted effects on host defense and various diseases, such as viral infections and cancers. However, the gene/protein network regulating type I interferon and apoptosis has not been elucidated completely. In this study, we selected grass carp (Ctenopharyngodon idella) as an experimental model to investigate the modulation of RNASEK on the secretion of type I interferon and apoptosis. We first cloned two paralogs RNASEK-a and -b in grass carp, defined three exons in each gene, and found the length of both coding regions is 306 bp with 73.27% of protein homology. The protein sequences of the two paralogs are highly conserved across species. Two proteins were mainly localized in early and late endosomes and endoplasmic reticulum. Further, quantitative real-time PCR demonstrated that dsRNA poly I:C and grass carp reovirus upregulated RNASEK-a and -b in grass carp cells and tissues. Overexpression of RNASEK-a and -b individually induced type I interferon expression and the phosphorylation of IRF3/IRF7 shown by Western blot and immunofluorescent staining, increased Bax/Bcl-2 mRNA ratio, DNA fragmentations, TUNEL-positive cells, and the proportion of Annexin V-positive signals in flow cytometry, and activated eIF2α, opposite to that observed when RNASEK-a and -b were knocked down in multiple cell types. Taken together, we claim for the first time that fish paralog proteins RNASEK-a and -b enhance type I interferon secretion and promote apoptosis, which may be involved in the phosphorylation of IRF3/IRF7 and eIF2α, respectively. Our study reveals a previously unrecognized role of RNASEK as a new positive regulator of type I interferon and apoptosis.
Collapse
Affiliation(s)
- Zhi-Chao Sun
- College of Life Science, Nanchang University, Nanchang, China.,Human Aging Research Institute, Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University, Nanchang, China
| | - Xiaowen Xu
- College of Life Science, Nanchang University, Nanchang, China
| | - Meifeng Li
- College of Life Science, Nanchang University, Nanchang, China
| | - Qing Zeng
- College of Life Science, Nanchang University, Nanchang, China
| | - Ying Zhu
- College of Life Science, Nanchang University, Nanchang, China.,Human Aging Research Institute, Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, China.,Blood Transfusion Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shanghong Wang
- College of Life Science, Nanchang University, Nanchang, China
| | - Yuanyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Li Tian
- College of Life Science, Nanchang University, Nanchang, China.,Human Aging Research Institute, Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, China
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Hu Z, Du H, Lin G, Han K, Cheng X, Feng Z, Mao H, Hu C. Grass carp (Ctenopharyngodon idella) PACT induces cell apoptosis and activates NF-кB via PKR. FISH & SHELLFISH IMMUNOLOGY 2020; 103:377-384. [PMID: 32454210 DOI: 10.1016/j.fsi.2020.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
As a dsRNA-dependent and interferon-induced protein kinase, PKR is involved in antiviral immune response and apoptosis mediated by various cytokines. In mammalian cells, PKR can also be activated in the absence of dsRNA. A PKR activator, PACT (PKR activating protein), also referred to as RAX (PKR-associated protein X) plays an important role. In recent years, with the increasing recognition of fish interferon system, PKR and PACT have been gradually revealed in fish. However, the function of fish PACT is unclear. In our previous work, we suggested that grass carp (Ctenopharyngodon idella) PACT must be involved in IRF2 and ATF4-mediated stress response pathways. In the present study, we found that the expression of C. idella PACT (CiPACT) and CiPKR were significantly up-regulated under the stimulation of LPS. It indicated that CiPACT and CiPKR may play an important role in response to LPS stimulation. In addition, the response time of CiPACT to LPS is earlier than that of CiPKR. It has also shown that overexpression of CiPACT in CIK cells can significantly enhance the level of p-eIF2α, induces apoptosis and translocation of Cip65 to nucleus from cytoplasm. To further understand the mechanism, we carried out the co-immunoprecipitation assay. It proved that the interaction of CiPACT and CiPKR made the phosphorylation of CiPKR. Overexpression of CiPACT induced the down-regulation of intracellular expression of bcl-2 and up-regulation of bax. However, in CiPKR knocked-down cells the expression of bcl-2 and bax were just the opposite. Therefore, the mechanism of fish PACT induces apoptosis and activates NF-кB is dependent on PKR.
Collapse
Affiliation(s)
- Zhizhen Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hailing Du
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Gang Lin
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kun Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xining Cheng
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zhiqing Feng
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Xie X, Xu K, Mao H, Lv Y, Weng P, Chang K, Lin G, Hu C. Grass carp (Ctenopharyngodon idella) IRAK1 and STAT3 up-regulate synergistically the transcription of IL-10. FISH & SHELLFISH IMMUNOLOGY 2020; 102:28-35. [PMID: 32278837 DOI: 10.1016/j.fsi.2020.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
In vertebrates, IL-10 is an anti-inflammatory factor that serves as a key inhibitory role in a wide range of immune responses. IRAK1 (IL-1 receptor-associated kinase 1), a key molecule in the inflammatory signal of IL-1R/TLR, plays an important pivotal role in regulating the autoimmunity of body. STAT3 (Signal transducer and activator of transcription 3) activated by IRAK1 participates in inflammation, tumorigenesis, metabolic disorders and immune response. Under the stimulation of LPS, IRAK1 enters the nucleus to form a dimer with STAT3 and regulates the expression of IL-10. However, the relationship between fish IRAK1 and STAT3 has not been reported. To explain the anti-inflammation in fish, we amplified and identified the complete open reading frame of grass carp IRAK1 (CiIRAK1) and STAT3 (CiSTAT3) based on the existing sequences. The expression of CiIRAK1 and CiSTAT3 were up-regulated significantly under the stimulation of LPS. This result suggests that both CiIRAK1 and CiSTAT3 may be involved in LPS-induced TLR4 pathway. The subcellular localization experiment revealed that CiIRAK1 is distributed in cytoplasm and enters nucleus after LPS stimulation. CiSTAT3 is distributed in both cytoplasm and nucleus with or without LPS stimulation. Immunoprecipitation assay revealed that CiIRAK1 interacted with CiSTAT3 under LPS stimulation. However in absence of LPS stimulation, CiIRAK1 and CiSTAT3 cannot interact with each other. Subsequently, immunofluorescence colocalization experiment further proved the interaction of CiIRAK1 and CiSTAT3 in nucleus under LPS stimulation. The dual luciferase reporter assays indicated that the binding of CiIRAK1 and CiSTAT3 synergistically enhanced the activity of CiIL-10 promoter.
Collapse
Affiliation(s)
- Xiaofen Xie
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kang Xu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Yangfeng Lv
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Panwei Weng
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Gang Lin
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Huang X, Jiang Y, Zhang W, Cheng Y, Wang Y, Ma X, Duan Y, Xia L, Chen Y, Wu N, Shi M, Xia XQ. Construction of a high-density genetic map and mapping of growth related QTLs in the grass carp (Ctenopharyngodon idellus). BMC Genomics 2020; 21:313. [PMID: 32306899 PMCID: PMC7168995 DOI: 10.1186/s12864-020-6730-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/14/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Grass carp (Ctenopharyngodon idellus) are important species in Asian aquaculture. A draft genome for grass carp has already been published in 2015. However, there is still a requirement for a suitable genetic linkage map to arrange scaffolds on chromosomal frameworks. QTL analysis is a powerful tool to detect key locations for quantitative traits, especially in aquaculture. There no growth related QTLs of grass carp have been published yet. Even the growth trait is one of the focuses in grass carp culture. RESULTS In this study, a pair of distantly related parent grass carps and their 100 six-month-old full-sib offspring were used to construct a high-density genetic map with 6429 single nucleotide polymorphisms (SNPs) by 2b-RAD technology. The total length of the consensus map is 5553.43 cM with the average marker interval of 1.92 cM. The map has a good collinearity with both the grass carp draft genome and the zebrafish genome, and it assembled 89.91% of the draft genome to a chromosomal level. Additionally, according to the growth-related traits of progenies, 30 quantitative trait loci (QTLs), including 7 for body weight, 9 for body length, 5 for body height and 9 for total length, were identified in 16 locations on 5 linkage groups. The phenotypic variance explained for these QTLs varies from 13.4 to 21.6%. Finally, 17 genes located in these regions were considered to be growth-related because they either had functional mutations predicted from the resequencing data of the parents. CONCLUSION A high density genetic linkage map of grass carp was built and it assembled the draft genome to a chromosomal level. Thirty growth related QTLs were detected. After the cross analysis of Parents resequencing data, 17 candidate genes were obtained for further researches.
Collapse
Affiliation(s)
- Xiaoli Huang
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanxin Jiang
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanting Zhang
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Yingyin Cheng
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Yaping Wang
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Ma
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - You Duan
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Xia
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaxin Chen
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Wu
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Mijuan Shi
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Li Y, Mao Y, Yu N, Xu X, Li M, Jiang Z, Wu C, Xu K, Chang K, Wang S, Mao H, Hu C. Grass carp (Ctenopharyngodon idellus) TRAF6 up-regulates IFN1 expression by activating IRF5. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103475. [PMID: 31437525 DOI: 10.1016/j.dci.2019.103475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
In mammals, interferon regulatory factor 5 (IRF5) can be activated by tumor necrosis factor receptor-associated factor 6 (TRAF6). Upon activation, IRF5 translocates into the nucleus, where it binds to IFN promoter and up-regulates IFN expression. However, there are few reports on the molecular mechanism by which TRAF6 up-regulates IFN expression in fish. In this study, we explored how Grass carp (Ctenopharyngodon idellus) TRAF6 initiated innate immunity by activating IRF5. We found that CiTRAF6, CiIRF5 and CiIFN1 were all significantly up-regulated in LPS-stimulated CIK cells and the expression of CiTRAF6 was earlier than the expressions of CiIRF5 and CiIFN1. These findings suggested that CiIFN1 expression might be induced by CiTRAF6 in fish. CiIFN1 expression, CiIFN1 promoter activity and CO cells viability were all significantly up-regulated in the overexpression experiments, but they were significantly down-regulated in the gene silencing experiments. This indicated that CiTRAF6, along with CiIRF5, regulated CiIFN1 expression. The localization analysis found that both CiTRAF6 and CiIRF5 located in the cytoplasm. Following LPS stimulation, CiIRF5 was observed to translocate to the nucleus. GST-pull down and co-IP experiments revealed that CiTRAF6 interacted with CiIRF5. The colocalization analysis also showed that CiTRAF6 bound with CiIRF5 in the cytoplasm. Overexpression of CiTRAF6 increased the endogenous CiIRF5, promoted its ubiquitination and nuclear translocation. In conclusion, CiTRAF6 bound to CiIRF5 in the cytoplasm, and then activated CiIRF5, resulting in up-regulating the expression of CiIFN1.
Collapse
Affiliation(s)
- Yinping Li
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Yuexin Mao
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Ningli Yu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Meifeng Li
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Zeyin Jiang
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Chuxin Wu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Kang Xu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| | - Chengyu Hu
- College of Life Science, Nanchang University, Poyang Lake Key Laboratory of Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|