1
|
Khalil M, Stuhr M, Kunzmann A, Westphal H. Simultaneous ocean acidification and warming do not alter the lipid-associated biochemistry but induce enzyme activities in an asterinid starfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173000. [PMID: 38719050 DOI: 10.1016/j.scitotenv.2024.173000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Ocean acidification and warming affect marine ecosystems from the molecular scale in organismal physiology to broad alterations of ecosystem functions. However, knowledge of their combined effects on tropical-subtropical intertidal species remains limited. Pushing the environmental range of marine species away from the optimum initiates stress impacting biochemical metabolic characteristics, with consequences on lipid-associated and enzyme biochemistry. This study investigates lipid-associated fatty acids (FAs) and enzyme activities involved in biomineralization of the tropical-subtropical starfish Aquilonastra yairi in response to projected near-future global change. The starfish were acclimatized to two temperature levels (27 °C, 32 °C) crossed with three pCO2 concentrations (455 μatm, 1052 μatm, 2066 μatm). Total lipid (ΣLC) and FAs composition were unaffected by combined elevated temperature and pCO2, but at elevated temperature, there was an increase in ΣLC, SFAs (saturated FAs) and PUFAs (polyunsaturated FAs), and a decrease in MUFAs (monounsaturated FAs). However, temperature was the sole factor to significantly alter SFAs composition. Positive parabolic responses of Ca-ATPase and Mg-ATPase enzyme activities were detected at 27 °C with elevated pCO2, while stable enzyme activities were observed at 32 °C with elevated pCO2. Our results indicate that the lipid-associated biochemistry of A. yairi is resilient and capable of coping with near-future ocean acidification and warming. However, the calcification-related enzymes Ca-ATPase and Mg-ATPase activity appear to be more sensitive to pCO2/pH changes, leading to vulnerability concerning the skeletal structure.
Collapse
Affiliation(s)
- Munawar Khalil
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany; Department of Marine Science, Faculty of Agriculture, Universitas Malikussaleh, Reuleut Main Campus, 24355 North Aceh, Indonesia.
| | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359 Bremen, Germany; Faculty of Geosciences, University of Bremen, Klagenfurter Str. 2-4, 28359 Bremen, Germany
| |
Collapse
|
2
|
Wang Z, Li J, Zhao P, Yu Z, Yang L, Ding X, Lv H, Yi S, Sheng Q, Zhang L, Zhou F, Wang H. Integrated microbiome and metabolome analyses reveal the effects of low pH on intestinal health and homeostasis of crayfish (Procambarus clarkii). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106903. [PMID: 38503037 DOI: 10.1016/j.aquatox.2024.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Low pH (LpH) poses a significant challenge to the health, immune response, and growth of aquatic animals worldwide. Crayfish (Procambarus clarkii) is a globally farmed freshwater species with a remarkable adaptability to various environmental stressors. However, the effects of LpH stress on the microbiota and host metabolism in crayfish intestines remain poorly understood. In this study, integrated analyses of antioxidant enzyme activity, histopathological damage, 16S rRNA gene sequencing, and liquid chromatography-mass spectrometry (LC-MS) were performed to investigate the physiology, histopathology, microbiota, and metabolite changes in crayfish intestines exposed to LpH treatment. The results showed that LpH stress induced obvious changes in superoxide dismutase and catalase activities and histopathological alterations in crayfish intestines. Furthermore, 16S rRNA gene sequencing analysis revealed that exposure to LpH caused significant alterations in the diversity and composition of the crayfish intestinal microbiota at the phylum and genus levels. At the genus level, 14 genera including Bacilloplasma, Citrobacter, Shewanella, Vibrio, RsaHf231, Erysipelatoclostridium, Anaerorhabdus, Dysgonomonas, Flavobacterium, Tyzzerella, Brachymonas, Muribaculaceae, Propionivibrio, and Comamonas, exhibited significant differences in their relative abundances. The LC-MS analysis revealed 859 differentially expressed metabolites in crayfish intestines in response to LpH, including 363 and 496 upregulated and downregulated metabolites, respectively. These identified metabolites exhibited significant enrichment in 24 Kyoto Encyclopedia of Genes and Genomes pathways (p < 0.05), including seven and 17 upregulated and downregulated pathways, respectively. These pathways are mainly associated with energy and amino acid metabolism. Correlation analysis revealed a strong correlation between the metabolites and intestinal microbiota of crayfish during LpH treatment. These findings suggest that LpH may induce significant oxidative stress, intestinal tissue damage, disruption of intestinal microbiota homeostasis, and alterations in the metabolism in crayfish. These findings provide valuable insights into how the microbial and metabolic processes of crayfish intestines respond to LpH stress.
Collapse
Affiliation(s)
- Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Pengfei Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zaihang Yu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - He Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - ShaoKui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiang Sheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China.
| | - Hua Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China; Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou 313000, China; Huzhou Key Laboratory of Medical and Environmental Application Technologies, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
3
|
Ren X, Jia S, Gao B, Zhou Q, Xu Y, Liu P, Li J. Application of proteomics and metabolomics to assess ammonia stress response and tolerance mechanisms of juvenile ornate rock lobster Panulirus ornatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155751. [PMID: 35533861 DOI: 10.1016/j.scitotenv.2022.155751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Ammonia is a common pollutant in the aquatic ecosystem and closed aquaculture systems. It may pose a threat to the lobster growth, reproduction and survival. However, there is lack of research of the mechanisms on the toxic effects ammonia at molecular levels. In this work, proteomics and metabolomics were integrated to analyze the proteome and metabolome responses in the ornate spiny lobster Panulirus ornatus treated with ammonia (20 mg L-1) for 48 h. A total of 199 proteins and 176 metabolites were significantly altered in P. ornatus following ammonia treatment. The responsive proteins and metabolites were predominantly involved in immune response, phase I and phase II biotransformation, carbohydrate metabolism, amino acid metabolism, and lipid metabolism. Furthermore, an increase in urea levels was observed, and amino acid metabolism was induced, indicating that the urea cycle was utilized to biotransform ammonia so as to reduce endogenous ammonia content. Ammonia exposure also affected the antioxidant system and induced cellular apoptosis. Overall, our results provide comprehensive insights into the molecular mechanisms underlying the response of P. ornatus to ammonia stress. We believe that the data reported herein should contribute to the development of novel, efficient methods for P. ornatus aquaculture.
Collapse
Affiliation(s)
- Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Shaoting Jia
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Baoquan Gao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Qiansen Zhou
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Yao Xu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, PR China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
4
|
Cheng C, Ma H, Liu G, Deng Y, Jiang J, Feng J, Guo Z. Biochemical, metabolic, and immune responses of mud crab (Scylla paramamosain) after mud crab reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:437-445. [PMID: 35779811 DOI: 10.1016/j.fsi.2022.06.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.
Collapse
Affiliation(s)
- ChangHong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - HongLing Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - GuangXin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - YiQing Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - JianJun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - ZhiXun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| |
Collapse
|
5
|
Li W, Wang J, Li J, Liu P, Li J, Zhao F. Antioxidant, Transcriptomic and Metabonomic Analysis of Hepatopancreatic Stress Resistance in Exopalaemon carinicauda Following Astaxanthin Feeding. FRONTIERS IN MARINE SCIENCE 2022; 9. [DOI: 10.3389/fmars.2022.906963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Astaxanthin (Axn) is a xanthophyll carotenoid that has previously been shown to suppress hepatic inflammation, reduce oxidative liver damage, and improve metabolic profiles. Exopalaemon carinicauda (E. carinicauda) is an economically important fishery species in China that has been found to exhibit increased body weight following Axn feeding as compared to a standard diet. In this study, dietary Axn can significantly decreased MDA content, T-AOC and significantly increased SOD, GSH and CAT activities in shrimp hepatopancreas. Moreover, transcriptome and metabolome of E. carinicauda after Axn feeding were investigated to identify the mechanism of the effect of Axn on E. carinicauda. The transcriptomic data revealed that a total 99 different expression genes (DEGs) were identified between the Axn and control groups, of which 47 and 52 were upregulated and downregulated, respectively. DEGs of E. carinicauda such as catherpsin, actin and PARP after Axn feeding were associated with apoptosis and immune system. The metabolomic analysis revealed that A total of 73 different expression metabolites (DEMs) were identified in both metabolites, including 30 downregulated metabolites and 43 upregulated metabolites. And Axn participate in metabolism processes in hepatopancreas of E. carinicauda, including the TCA cycle, amino acid metabolism and lipid metabolism. The multiple comparative analysis implicated that Axn can improve the antioxidant capacity of hepatopancreas and the energy supply of hepatopancreas mitochondria, and then improve the ability of anti-apoptosis. Collectively, all these results will greatly provide new insights into the molecular mechanisms underlying tolerance of adverse environment in E. carinicauda.
Collapse
|
6
|
Maia S, Marques SC, Dupont S, Neves M, Pinto HJ, Reis J, Leandro SM. Effects of ocean acidification and warming on the development and biochemical responses of juvenile shrimp Palaemon elegans (Rathke, 1837). MARINE ENVIRONMENTAL RESEARCH 2022; 176:105580. [PMID: 35298941 DOI: 10.1016/j.marenvres.2022.105580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic CO2 emissions have led to the warming and acidification of the oceans. Although, there is a growing of evidence showing that simultaneous occurrence of ocean acidification and ocean warming are threats to marine organisms, information on their combined effect on coastal shrimp species remains scarce. The purpose of this study was to estimate the combined effects of seawater acidification and warming on growth-related traits and biochemical responses of P. elegans juveniles. In this work, shrimp were exposed for 65 days at 4 experimental conditions: pH 8.10 * 18 °C, pH 7.80 * 18 °C, pH 8.10 * 22 °C, pH 7.80 * 22 °C. The results showed that low pH decreases the lipid content by ∼13% (p < 0.05). Higher temperature reduced the condition factor by ∼11%, the protein content by ∼20%, the PUFA by ∼8,6% and shortened moulting events by 5 days (p > 0.05) while the SFA increased ∼9.4%. The decrease in condition factor and protein was however more prominent in organisms exposed to the combination of pH and temperature with a decrease of ∼13% and ∼21%, respectively. Furthermore, essential fatty acids as EPA and DHA also decreased by ∼20% and ∼6.6% in low pH and higher temperature condition. Despite this study suggest that warming may have a greater impact than acidification, it has been shown that their combined effect can exacerbate these impacts with consequences for the shrimp's body size and biochemical profile.
Collapse
Affiliation(s)
- Simão Maia
- MARE-Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630, Peniche, Portugal.
| | - Sónia C Marques
- MARE-Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630, Peniche, Portugal
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Infrastructure, Kristineberg, Fiskebäckskil, 45178, Sweden; Radioecology Laboratory International Atomic Energy Agency (IAEA), Marine Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco
| | - Marta Neves
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Henrique J Pinto
- MARE-Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630, Peniche, Portugal
| | - João Reis
- MARE-Marine and Environmental Sciences Centre, Polytechnic of Leiria, 2520-630, Peniche, Portugal
| | - Sérgio M Leandro
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
| |
Collapse
|
7
|
Guo K, Zhao Z, Luo L, Wang S, Zhang R, Xu W, Qiao G. Untargeted GC-MS metabolomics reveals the metabolic responses in the gills of Chinese mitten crab (Eriocheir sinensis) subjected to air-exposure stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113159. [PMID: 35032728 DOI: 10.1016/j.ecoenv.2021.113159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Desiccation is a common stress experienced by crabs during aquaculture and transportation. In China, the crustacean, Chinese mitten crab (Eriocheir sinensis), is economically important. However, little is known about the molecular pathways underlying physiological stress. Here, by using untargeted gas chromatography-mass spectrometry metabolomics, we investigated the metabolic responses of the gills of E. sinensis subjected to air-exposure stress by six biological replicates of the control group (CG) and the air-exposure stress group (AG). Metabolomic analysis identified 43 differential metabolites in the AG versus the CG that could be potential biomarkers of desiccation stress. In addition, integrated analysis of key metabolic pathways revealed the involvement of histidine metabolism; glycine, serine and threonine metabolism; the pentose phosphate pathway; the citrate cycle (TCA cycle); and nicotinate and nicotinamide metabolism. These findings indicated the special physiological responses to air-exposure stresses in this species.
Collapse
Affiliation(s)
- Kun Guo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhigang Zhao
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Liang Luo
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shihui Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Rui Zhang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wei Xu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Guo Qiao
- Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
8
|
Viña-Trillos N, Urzúa Á. Comparison of lipids and fatty acids among tissues of two semiterrestrial crabs reveals ecophysiological adaptations in changing coastal environments. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111012. [PMID: 34102296 DOI: 10.1016/j.cbpa.2021.111012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022]
Abstract
Decapods have successfully colonized changing coastal habitats throughout the world by adapting their behavior, physiology, and biochemistry. Biochemical reserves, such as lipids and fatty acids (FAs), play fundamental roles in this adaptation process. These energy reserves are key for the development of decapods and their composition mainly depends on the type and quality of food available in their habitats. This study evaluated the lipid content and FA composition of three tissues (hepatopancreas, gills, and muscle) in two widely distributed, semi-terrestrial coastal crab species in Chile, Cyclograpsus cinereus from the upper intertidal and Hemigrapsus crenulatus from estuaries. This evaluation aimed to assess the physiological role of the bioenergetic reserves of these crabs, which tolerate fluctuating environmental conditions. Our results showed that both species had a higher lipid content in the hepatopancreas and a lower lipid content in its gills and muscle. All three of the evaluated tissues in C. cinereus showed high contents of saturated fatty acids (SFAs), and its hepatopancreas displayed the highest contents of monounsaturated (MUFAs) and polyunsaturated fatty acids (PUFAs). In turn, H. crenulatus had the highest contents of MUFAs and PUFAs in its gills and muscle tissues, including an important amount of eicosapentaenoic acid (EPA). The FA content of C. cinereus may indicate an adaptive physiological response aimed at maintaining its cellular fluid balance during periods of desiccation in the upper intertidal zone. In contrast, the FAs found in H. crenulatus may be linked to the high activity of the sodium‑potassium pump in its gills, in order to maintain osmoregulation in estuaries.
Collapse
Affiliation(s)
- Natalia Viña-Trillos
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción (UCSC), Casilla 297. Concepción, Chile; Programa de Doctorado en Ciencias Mención Biodiversidad y Biorecursos, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ángel Urzúa
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción (UCSC), Casilla 297. Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
9
|
Xiao J, Liu QY, Du JH, Zhu WL, Li QY, Chen XL, Chen XH, Liu H, Zhou XY, Zhao YZ, Wang HL. Integrated analysis of physiological, transcriptomic and metabolomic responses and tolerance mechanism of nitrite exposure in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134416. [PMID: 32000302 DOI: 10.1016/j.scitotenv.2019.134416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/04/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Nitrite accumulation in aquatic environments is a potential risk factor that disrupts multiple physiological functions in aquatic animals. In this study, the physiology, transcriptome and metabolome of the control group (LV-C), nitrite-tolerance group (LV-NT) and nitrite-sensitive group (LV-NS) were investigated to identify the stress responses and mechanisms underlying the nitrite tolerance of Litopenaeus vannamei. After LV-NT and LV-NS were subjected to nitrite stress, the hemocyanin contents were significantly decreased, and hepatopancreas showed severe histological damage compared with LV-C. Likewise, the antioxidant enzymes were also significantly changed after nitrite exposure. The transcriptome data revealed differentially expressed genes associated with immune system, cytoskeleton remodeling and apoptosis in LV-NT and LV-NS. The combination of transcriptomic and metabolomic analysis revealed nitrite exposure disturbed metabolism processes in L. vannamei, including amino acid metabolism, nucleotide metabolism and lipid metabolism. The multiple comparative analysis implicated that higher nitrite tolerance of LV-NT than LV-NS may be attributed to enhanced hypoxia inducible factor-1α expression to regulate energy supply and gaseous exchange. Moreover, LV-NT showed higher antioxidative ability, detoxification gene expression and enhanced fatty acids contents after nitrite exposure in relative to LV-NS. Collectively, all these results will greatly provide new insights into the molecular mechanisms underlying the stress responses and tolerance of nitrite exposure in L. vannamei.
Collapse
Affiliation(s)
- Jie Xiao
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Qing-Yun Liu
- Guangxi Academy of Fishery Sciences, GuangxiKey Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Nanning 530021, PR China
| | - Jing-Hao Du
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Wei-Lin Zhu
- Guangxi Academy of Fishery Sciences, GuangxiKey Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Nanning 530021, PR China
| | - Qiang-Yong Li
- Guangxi Academy of Fishery Sciences, GuangxiKey Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Nanning 530021, PR China
| | - Xiu-Li Chen
- Guangxi Academy of Fishery Sciences, GuangxiKey Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Nanning 530021, PR China
| | - Xiao-Han Chen
- Guangxi Academy of Fishery Sciences, GuangxiKey Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Nanning 530021, PR China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Xiao-Yun Zhou
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China
| | - Yong-Zhen Zhao
- Guangxi Academy of Fishery Sciences, GuangxiKey Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Nanning 530021, PR China.
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
10
|
Luo ZZ, Sun HM, Guo JW, Luo P, Hu CQ, Huang W, Shu H. Molecular characterization of a RNA polymerase (RNAP) II (DNA directed) polypeptide H (POLR2H) in Pacific white shrimp (Litopenaeus vannamei) and its role in response to high-pH stress. FISH & SHELLFISH IMMUNOLOGY 2020; 96:245-253. [PMID: 31830564 DOI: 10.1016/j.fsi.2019.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
RNA polymerase (RNAP) II (DNA-directed) (POLR2) genes are essential for cell viability under environmental stress and for the transfer of biological information from DNA to RNA. However, the function and characteristics of POLR2 genes in crustaceans are still unknown. In the present study, a POLR2H cDNA was isolated from Pacific white shrimp (Litopenaeus vannamei) and designated as Lv-POLR2H. The full-length Lv-POLR2H cDNA is 772 bp in length and contains a 32-bp 5'- untranslated region (UTR), a 284-bp 3'- UTR with a poly (A) sequence, and an open reading frame (ORF) of 456 bp encoding an Lv-POLR2H protein of 151 amino acids with a deduced molecular weight of 17.21 kDa. The Lv-POLR2H protein only contains one functional domain, harbors no transmembrane domains and mainly locates in the nucleus. The expression of the Lv-POLR2H mRNA was ubiquitously detected in all selected tissues, with the highest level in the gills. In situ hybridization (ISH) analysis showed that Lv-POLR2H was mainly located in the secondary gill filaments, the transcript levels of Lv-POLR2H in the gills were found to be significantly affected after challenge by pH, low salinity and high concentrations of NO2- and NH4+, indicating that Lv-POLR2H in gill tissues might play roles under various physical stresses. Specifically, under high-pH stress, knockdown of Lv-POLR2H via siRNA significantly decreased the survival rate of the shrimp, indicating its key roles in the response to high-pH stress. Our study may provide the first evidence of the role of POLR2H in shrimp responding to high-pH stress and provides new insight into molecular regulation in response to high pH in crustaceans.
Collapse
Affiliation(s)
- Zhi-Zhan Luo
- School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hui-Ming Sun
- School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jing-Wen Guo
- School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chao-Qun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Wen Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hu Shu
- School of Life Science/School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill. Sci Rep 2019; 9:12375. [PMID: 31451724 PMCID: PMC6710253 DOI: 10.1038/s41598-019-48665-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Euphausia superba (Antarctic krill) is a keystone species in the Southern Ocean, but little is known about how it will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), alters the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels mimicking near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). Total lipid mass (mg g-1 DM) of krill was unaffected by near-future pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of 18:2n-6 (up to 1.2% increase), 20:4n-6 (up to 0.8% increase), lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios, and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.
Collapse
|
12
|
Huang W, Li H, Cheng C, Ren C, Chen T, Jiang X, Cheng K, Luo P, Hu C. Analysis of the transcriptome data in Litopenaeus vannamei reveals the immune basis and predicts the hub regulation-genes in response to high-pH stress. PLoS One 2018; 13:e0207771. [PMID: 30517152 PMCID: PMC6281221 DOI: 10.1371/journal.pone.0207771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Soil salinization erodes the farmlands and poses a serious threat to human life, reuse of the saline-alkali lands as cultivated resources becomes increasingly prominent. Pacific white shrimp (Litopenaeus vannamei) is an important farmed aquatic species for the development and utilization of the saline-alkali areas. However, little is known about the adaptation mechanism of this species in terms of high-pH stress. In the present study, a transcriptome analysis on the gill tissues of L. vannamei in response to high-pH stress (pH 9.3 ± 0.1) was conducted. After analyzing, the cyclic nucleotide gated channel-Ca2+ (CNGC-Ca2+) and patched 1 (Ptc1) were detected as the majority annotated components in the cAMP signaling pathway (KO04024), indicating that the CNGC-Ca2+ and Ptc1 might be the candidate components for transducing and maintaining the high-pH stress signals, respectively. The immunoglobulin superfamily (IgSF), heat shock protein (HSP), glutathione s-transferase (GST), prophenoloxidase/phenoloxidase (proPO/PO), superoxide dismutase (SOD), anti-lipopolysaccharide factor (ALF) and lipoprotein were discovered as the major transcribed immune factors in response to high-pH stress. To further detect hub regulation-genes, protein-protein interaction (PPI) networks were constructed; the genes/proteins "Polymerase (RNA) II (DNA directed) polypeptide A" (POLR2A), "Histone acetyltransferase p300" (EP300) and "Heat shock 70kDa protein 8" (HSPA8) were suggested as the top three hub regulation-genes in response to acute high-pH stress; the genes/proteins "Heat shock 70kDa protein 4" (HSPA4), "FBJ murine osteosarcoma viral oncogene homolog" (FOS) and "Nucleoporin 54kDa" (NUP54) were proposed as the top three hub regulation-genes involved in adapting endurance high-pH stress; the protein-interactions of "EP300-HSPA8" and "HSPA4-NUP54" were detected as the most important biological interactions in response to the high-pH stress; and the HSP70 family genes might play essential roles in the adaptation of the high-pH stress environment in L. vannamei. These findings provide the first insight into the molecular and immune basis of L. vannamei in terms of high-pH environments, and the construction of a PPI network might improve our understanding in revealing the hub regulation-genes in response to abiotic stress in shrimp species and might be beneficial for further studies.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | | | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (CH); (PL)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (CH); (PL)
| |
Collapse
|
13
|
Lee MC, Park JC, Lee JS. Effects of environmental stressors on lipid metabolism in aquatic invertebrates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:83-92. [PMID: 29727774 DOI: 10.1016/j.aquatox.2018.04.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Lipid metabolism is crucial for the survival and propagation of the species, since lipids are an essential cellular component across animal taxa for maintaining homeostasis in the presence of environmental stressors. This review aims to summarize information on the lipid metabolism under environmental stressors in aquatic invertebrates. Fatty acid synthesis from glucose via de novo lipogenesis (DNL) pathway is mostly well-conserved across animal taxa. The structure of free fatty acid (FFA) from both dietary and DNL pathway could be transformed by elongase and desaturase. In addition, FFA can be stored in lipid droplet as triacylglycerol, upon attachment to glycerol. However, due to the limited information on both gene and lipid composition, in-depth studies on the structural modification of FFA and their storage conformation are required. Despite previously validated evidences on the disturbance of the normal life cycle and lipid homeostasis by the environmental stressors (e.g., obesogens, salinity, temperature, pCO2, and nutrients) in the aquatic invertebrates, the mechanism behind these effects are still poorly understood. To overcome this limitation, omics approaches such as transcriptomic and proteomic analyses have been used, but there are still gaps in our knowledge on aquatic invertebrates as well as the lipidome. This paper provides a deeper understanding of lipid metabolism in aquatic invertebrates.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|