1
|
Zhang C, Zhao Z, Jia YJ, Zhang PQ, Sun Y, Zhou YC, Wang GX, Zhu B. Rationally Designed Self-Assembling Nanovaccines Elicit Robust Mucosal and Systemic Immunity against Rhabdovirus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:228-244. [PMID: 38055273 DOI: 10.1021/acsami.3c14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Viral diseases have constantly caused great threats to global public health, resulting in an urgent need for effective vaccines. However, the current viral vaccines often show low immunogenicity. To counter this, we report a smart strategy of a well-designed modular nanoparticle (LSG-TDH) that recapitulates the dominant antigen SG, low-molecular-weight protamine, and tetralysine-modified H-chain apoferritin (TDH). The constructed LSG-TDH nanovaccine could self-assemble into a nanocage structure, which confers excellent mucus-penetrating, cellular affinity, and uptake ability. Studies demonstrate that the LSG-TDH nanovaccine could strongly activate both mucosal and systemic immune responses. Importantly, by immunizing wild-type and TLR2 knockout (TLR2-KO) zebrafish, we found that TLR2 could mediate LSG-TDH-induced adaptive mucosal and systemic immune responses by activating antigen-presenting cells. Collectively, our findings offer new insights into rational viral vaccine design and provide additional evidence of the vital role of TLR2 in regulating adaptive immunity.
Collapse
Affiliation(s)
- Chen Zhang
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, P. R. China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yi-Jun Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Peng-Qi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Yun Sun
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, P. R. China
| | - Yong-Can Zhou
- Collaborative Innovation Center of Marine Science and Technology, Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou 570228, P. R. China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Bin Zhu
- College of Animal Science and Technology, Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
2
|
Wang Y, Liu X, Wang W, Sun G, Xu X, Feng Y, Li Z, Yang J. Investigating the Mechanism of Low-Salinity Environmental Adaptation in Sepia esculenta Larvae through Transcriptome Profiling. Animals (Basel) 2023; 13:3139. [PMID: 37835745 PMCID: PMC10571815 DOI: 10.3390/ani13193139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Sepia esculenta is an economically important mollusk distributed in the coastal waters of China. Juveniles are more susceptible to stimulation by the external environment than mature individuals. The ocean salinity fluctuates due to environmental changes. However, there is a lack of research on the salinity adaptations of S. esculenta. Therefore, in this study, we investigated the differential expression of genes in S. esculenta larvae after stimulation by low salinity. RNA samples were sequenced and 1039 differentially expressed genes (DEGs) were identified. Then, enrichment analysis was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, a protein-protein interaction network (PPI) was constructed, and the functions of key genes in S. esculenta larvae after low-salinity stimulation were explored. We suggest that low salinity leads to an excess proliferation of cells in S. esculenta larvae that, in turn, affects normal physiological activities. The results of this study can aid in the artificial incubation of S. esculenta and reduce the mortality of larvae.
Collapse
Affiliation(s)
- Yongjie Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
3
|
Cromileptes altivelis microRNA Transcriptome Analysis upon Nervous Necrosis Virus (NNV) Infection and the Effect of cal-miR-155 on Cells Apoptosis and Virus Replication. Viruses 2022; 14:v14102184. [PMID: 36298739 PMCID: PMC9609685 DOI: 10.3390/v14102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) could regulate various biological processes. Nervous necrosis virus (NNV) is one of the primary germs of the Humpback grouper (Cromileptes altivelis), a commercial fish of great importance for Asian aquaculture. However, there is limited available information on the host-virus interactions of C. altivelis. miRNAs have been shown to play key roles in the host response to infection by a variety of pathogens. To better understand the regulatory mechanism of miRNAs, we constructed miRNA transcriptomes and identified immune-related miRNAs of C. altivelis spleen in response to NNV infection. Reads from the three libraries were mapped onto the Danio rerio reference genome. As a result, a total of 942 mature miRNAs were determined, with 266 known miRNAs and 676 novel miRNAs. Among them, thirty-two differentially expressed miRNAs (DEmiRs) were identified compared to the PBS control. These DEmiRs were targeted on 895 genes, respectively, by using miRanda v3.3a. Then, 14 DEmiRs were validated by qRT-PCR and showed consistency with those obtained from high-throughput sequencing. In order to study the relationship between viral infection and host miRNA, a cell line from C. altivelis brain (CAB) was used to examine the expressions of five known DEmiRs (miR-132-3p, miR-194a, miR-155, miR-203b-5p, and miR-146) during NNV infection. The results showed that one miRNA, cal-miRNA-155, displayed significantly increased expression in response to the virus infection. Subsequently, it was proved that overexpression of cal-miR-155 enhanced cell apoptosis with or without NNV infection and inhibited virus replication in CAB cells. Oppositely, the cal-miRNA-155 inhibitor markedly suppressed apoptosis in CAB cells. The results of the apoptosis-related genes mRNA expression also showed the regulation of cal-miR-155 on the apoptosis process in CAB cells. These findings verify that miR-155 might exert a function as a pro-apoptotic factor in reply to NNV stimulation in CAB cells and help us further study the molecular mechanisms of the pathogenesis of NNV in C. altivelis.
Collapse
|
4
|
Qian R, Niu X, Wang Y, Guo Z, Deng X, Ding Z, Zhou M, Deng H. Targeting MALT1 Suppresses the Malignant Progression of Colorectal Cancer via miR-375/miR-365a-3p/NF-κB Axis. Front Cell Dev Biol 2022; 10:845048. [PMID: 35309901 PMCID: PMC8924071 DOI: 10.3389/fcell.2022.845048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with the second highest morbidity and the third highest mortality in the world, while the therapeutic options of targeted agents remain limited. Here, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), known as the upstream of the NF-κB signaling pathway, was identified to be highly upregulated in CRC tumors and cell lines. Furthermore, the downregulation of MALT1 or inhibition of its proteolytic function by MI-2 suppressed the cell proliferation and migration of CRC cells. In vivo, suppressing the MALT1 expression or its proteasome activity effectively reduced the size of the subcutaneous tumor in nude mice. Mechanistically, miR-375 and miR-365a-3p were identified to inhibit NF-κB activation via targeting MALT1. Overall, our results highlight that a novel regulatory axis, miRNA-MALT1-NF-κB, plays a vital role in the progression of CRC and provides novel and hopeful therapeutic targets for clinical treatment.
Collapse
Affiliation(s)
- Rui Qian
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xinli Niu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Zhi Guo
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xuyi Deng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haijun Deng
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
BAG2 mediates coelomocyte apoptosis in Vibrio splendidus challenged sea cucumber Apostichopus japonicus. Int J Biol Macromol 2021; 189:34-43. [PMID: 34418417 DOI: 10.1016/j.ijbiomac.2021.08.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) are closely related to the occurrence, development, and immune response of diseases. BCL2-associated athanogene 2 (BAG2) is a member of the BAG family that functions in diverse cellular processes, including cell death, differentiation, and cell division. In this study, we cloned the cDNA full-length of sea cucumber (Apostichopus japonicus) BAG2 (AjBAG2) and confirmed it is an anti-apoptotic protein in vitro and in vivo during Vibrio splendidus infection. Moreover, we identified a perfect complementarity between miR-375 and the 3'-untranslated region (UTR) sequence of AjBAG2. The miR-375 expression decreased the luciferase activity dose-dependently when co-transfected with the AjBAG2 3'-UTR-luciferase reporter containing the miR-375 target site in epithelioma papulosum cyprini (EPC) cells. This inhibition was partially recovered by a miR-375 specific inhibitor. The mRNA and protein levels of AjBAG2 were opposite to that of coelomocytes in challenged sea cucumber when treated with miR-375 mimics or inhibitors. Additionally, miR-375 expression induced coelomocytes apoptosis and blocked the anti-apoptotic activity of AjBAG2. Our data demonstrated that AjBAG2 is an anti-apoptotic protein during V. splendidus infection and this function can be inhibited by miR-375 in sea cucumbers.
Collapse
|
6
|
Huang JH, Jiao YH, Li L, Li DW, Li HY, Yang WD. Small RNA analysis of Perna viridis after exposure to Prorocentrum lima, a DSP toxins-producing dinoflagellate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105950. [PMID: 34474269 DOI: 10.1016/j.aquatox.2021.105950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Diarrheic shellfish poisoning toxins (DSP toxins) are a set of the most important phycotoxins produced by some dinoflagellates. Studies have shown that DSP toxins have various toxicities such as genotoxicity, cytotoxicity, and immunotoxicity to bivalve mollusks. However, these toxicities appear decreasing with exposure time and concentration of DSP toxins. The underlying mechanism involved remains unclear. In this study, small RNA sequencing was performed in the digestive gland of the mussel Perna viridis after exposure to DSP toxins-producing dinoflagellate Prorocentrum lima for different time periods. The potential roles of miRNAs in response and detoxification to DSP toxins in the mussel were analyzed. Small RNA sequencing of 12 samples from 72 individuals was conducted by BGISEQ-500. A total of 123 mature miRNAs were identified, including 90 conserved miRNAs and 33 potential novel miRNAs. After exposure to P. lima, multiple important miRNAs displayed some alterations. Further miRNA target prediction revealed some important genes involved in cytoskeleton, apoptosis, complement system and immune stress. qPCR demonstrated that miR-71_5, miR-750_1 and novel_mir4 were significantly up-regulated at 6 h after exposure to P. lima, while miR-100_2 was significantly down-regulated after 96 h of exposure. Accordingly, putative target genes of these differentially expressed miRNAs experienced some changes. After 6 h of DSP toxins exposure, NHLRC2 and C1q-like were significantly down-regulated. After 96 h of DSP toxins exposure, NHLRC2 was significantly up-regulated. It is reasonable to speculate that the mussel P. viridis might respond to DSP toxins through miR-750_1, novel_mir4 and miR-71_5 regulating the expression of relevant target genes involved in apoptosis, cytoskeleton, and immune response, etc. This study might provide new clues to uncover the toxic response of bivalve to DSP toxins and lay a foundation for revealing the roles of miRNAs in the environmental adaptation in shellfish.
Collapse
Affiliation(s)
- Jia-Hui Huang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Yu-Hu Jiao
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Li Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- College of Life Science and Technology, Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Zhou W, Xie Y, Li Y, Xie M, Zhang Z, Yang Y, Zhou Z, Duan M, Ran C. Research progress on the regulation of nutrition and immunity by microRNAs in fish. FISH & SHELLFISH IMMUNOLOGY 2021; 113:1-8. [PMID: 33766547 DOI: 10.1016/j.fsi.2021.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved, endogenous non-coding single-stranded small RNA molecules with a length of 18-25 nucleotides. MiRNAs can negatively regulate the target gene through complementary pairing with the mRNA. It has been more than 20 years since the discovery of miRNA molecules, and many achievements have been made in fish research. This paper reviews the research progress in the regulation of fish nutrition and immunity by miRNAs in recent years. MiRNAs regulate the synthesis of long-chain polyunsaturated fatty acids, and are involved in the metabolism of glucose, lipids, as well as cholesterol in fish. Moreover, miRNAs play various roles in antibacterial and antiviral immunity of fish. They can promote the immune response of fish, but may also participate in the immune escape mechanism of bacteria or viruses. One important aspect of miRNAs regulation on fish immunity is mediated by targeting pattern recognition receptors and downstream signaling factors. Together, current results indicate that miRNAs are widely involved in the complex regulatory network of fish. Further studies on fish miRNAs may deepen our understanding of the regulatory network of fish nutrition and immunity, and have the potential to promote the development of microRNA-based products and detection reagents that can be applied in aquaculture industry.
Collapse
Affiliation(s)
- Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Yu Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Beijing, 100081, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
8
|
Chang R, Zheng W, Sun Y, Xu T. microRNA-1388-5p inhibits NF-κB signaling pathway in miiuy croaker through targeting IRAK1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104025. [PMID: 33539892 DOI: 10.1016/j.dci.2021.104025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Innate immune response is an important response mechanism for the host to achieve self-protection, and it plays an important role in identifying pathogens and resisting pathogen invasion. Growing evidences have shown that microRNA functions as a crucial regulator involved in the host innate immune response. In this study, the regulations of miR-1388-5p to regulate NF-κB signaling pathways via targeting the IRAK1 gene was studied in miiuy croaker. First, through bioinformatics software prediction, we found that IRAK1 is the direct target of miR-1388-5p, and then the prediction results were verified by using dual-luciferase assays. Next, we found that both miR-1388-5p mimics and pre-miR-1388 plasmids inhibit IRAK1 expression by complementing the seed sequence in the 3'-untranslated region (3'-UTR) of IRAK1. Finally, we observed that miR-1388-5p could negatively regulate NF-κB pathways through targeting IRAK1. These results provide new insights into the function of miR-1388-5p in fish innate immunity, meanwhile enriching miRNA-mediated regulatory networks.
Collapse
Affiliation(s)
- Renjie Chang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
9
|
Liu Y, Wang Q, Wen J, Wu Y, Man C. MiR-375: A novel multifunctional regulator. Life Sci 2021; 275:119323. [PMID: 33744323 DOI: 10.1016/j.lfs.2021.119323] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 01/23/2023]
Abstract
MiR-375, a primitively described beta cell-specific miRNA, is confirmed to function as multi-functional regulator in diverse typical cellular pathways according to the follow-up researches. Based on the existing studies, miR-375 can regulate many functional genes and ectopic expressions of miR-375 are usually associated with pathological changes, and its expression regulation mechanism is mainly related to promoter methylation or circRNA. In this review, the regulatory functions of miR-375 in immunity, such as its relevance with macrophages, T helper cells and autoimmune diseases were briefly discussed. Also, the functions of miR-375 involved in inflammation, development and virus replication were reviewed. Finally, the mechanisms and application prospects of miR-375 in cancers were analyzed. Studies show that the application of miR-375 as therapeutic target and biomarker has a broad developing space in future. We hope this paper can provide reference for its further study.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Qiuyuan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yiru Wu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
10
|
Li Y, Xu S, Xu Q, Chen Y. Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:452-462. [PMID: 31918570 DOI: 10.1080/21691401.2019.1709856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Clostridium difficile (C. difficile) infection results in toxin-induced epithelial injury and marked colonic inflammation. Mitogen-activated protein kinase (MAPK) and NF-κB which regulated by MAP kinase phosphatase (MKP, also known as dual specificity phosphatases, DUSP) are fundamental signalling pathways that mediate multiple cellular processes. However, the regulation of DUSP/MAPKs and NF-κB pathway in C. difficile-induced colonic inflammation remains unclear. Here, we report that TcdB significantly inhibits cell viability and induces production of IL-1β and TNF-α and activation of MAPKs and NF-κB. An E3-ubiquitin ligase, TRIM46, ubiquitinates DUSP1, and its knockdown significantly inhibit TcdB-induced activation of MAPKs and NF-κB and production of IL-1β and TNF-α. Moreover, TRIM46 overexpression induced production of IL-1β and TNF-α also reversed by DUSP1 overexpression. We further found that promoter of TRIM46 also demonstrated binding to NF-κBp65, leading to regulate TRIM46 expression. In addition, the increased colonic inflammation induced by C. difficile administration was inhibited by TRIM46 knockdown in vivo. Taken together, the present study shows that TRIM46, as a new regulator of DUSP1/MAPKs and NF-κB signalling pathway, plays an important role in TcdB-induced colonic inflammation.
Collapse
Affiliation(s)
- Ying Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Su Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| | - Yijian Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Shanghai, China
| |
Collapse
|
11
|
Phosphatase and Tensin Homolog (PTEN) of Japanese Flounder-Its Regulation by miRNA and Role in Autophagy, Apoptosis and Pathogen Infection. Int J Mol Sci 2020; 21:ijms21207725. [PMID: 33086544 PMCID: PMC7589652 DOI: 10.3390/ijms21207725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with important roles in diverse biological processes including immunity. Japanese flounder (Paralichthys olivaceus) is an aquaculture fish species susceptible to the infection of bacterial and viral pathogens including Edwardsiella tarda. In a previous study, pol-miR-novel_547, a novel miRNA of flounder with unknown function, was found to be induced by E. tarda. In the present study, we investigated the regulation and function of pol-miR-novel_547 and its target gene. We found that pol-miR-novel_547 was regulated differently by E. tarda and the viral pathogen megalocytivirus, and pol-miR-novel_547 repressed the expression of PTEN (phosphatase and tensin homolog) of flounder (PoPTEN). PoPTEN is ubiquitously expressed in multiple tissues of flounder and responded to bacterial and viral infections. Interference with PoPTEN expression in flounder cells directly or via pol-miR-novel_547 promoted E. tarda invasion. Consistently, in vivo knockdown of PoPTEN enhanced E. tarda dissemination in flounder tissues, whereas in vivo overexpression of PoPTEN attenuated E. tarda dissemination but facilitated megalocytivirus replication. Further in vitro and in vivo studies showed that PoPTEN affected autophagy activation via the AKT/mTOR pathway and also modulated the process of apoptosis. Together these results reveal for the first time a critical role of fish PTEN and its regulatory miRNA in pathogen infection, autophagy, and apoptosis.
Collapse
|
12
|
Yu X, Li R, He L, Ding X, Liang Y, Peng W, Shi H, Lin H, Zhang Y, Lu D. MicroRNA-29b modulates the innate immune response by suppressing IFNγs production in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2020; 104:537-544. [PMID: 32470508 DOI: 10.1016/j.fsi.2020.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Interferon-γ (IFNγ), a type II interferon, is essential to host resistance against various infections. Unlike other vertebrates, fish have two types of IFNγs, IFNγ1 (also named IFNγ-rel) and IFNγ2. MicroRNAs (miRNAs) regulate multiple biological processes by suppressing mRNA translation or inducing mRNA degradation. Among them, miR-29 can directly target IFNγ and affact innate and adaptive immune responses in mice. There are five members of the miR-29 family in orange-spotted grouper (Epinephelus coioides), which share the same miRNA seed region. However, whether miR-29 directly targets E. coioides IFNγs and regulate IFNγ production is still unknown. In the present study, the negative correlation between miR-29b and both IFNγs in immune tissues of healthy E. coioides and grouper spleen cells (GS cells) stimulated with LPS or poly I:C was demonstrated. Moreover, dual-luciferase reporter assays and western blotting were performed to demonstrate that miR-29b suppressed E. coioides IFNγ production. Studies of NO production in GS cells after miR-29b transfection revealed that miR-29b overexpression affected NO production through the downregulation of IFNγ expression. Taken together, our results suggest that miR-29b may directly target E. coioides IFNγs and modulate IFNγ-mediated innate immune responses by suppressing E. coioides IFNγs production.
Collapse
Affiliation(s)
- Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Ruozhu Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Xu Ding
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Yaosi Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Wan Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Herong Shi
- Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China.
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China.
| |
Collapse
|
13
|
Peng W, Zhang C, Peng J, Huang Y, Peng C, Tan Y, Ji D, Zhang Y, Zhang D, Tang J, Feng Y, Sun Y. Lnc-FAM84B-4 acts as an oncogenic lncRNA by interacting with protein hnRNPK to restrain MAPK phosphatases-DUSP1 expression. Cancer Lett 2020; 494:94-106. [PMID: 32866608 DOI: 10.1016/j.canlet.2020.08.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
The mitogen activated protein kinase (MAPK) pathway has been reported to be involved in many cancer developments. Normally, MAPK activity is self-limited between rapid phosphorylation and dephosphorylation. In abnormal conditions, however, this dynamic equilibrium is broken, trigging tumor-suppressing or -promoting roles. While dual-specificity MAPK phosphatases (MKP/DUSPs) are important for cascade control in MAPK pathway, their role in colorectal cancer (CRC) remains largely unknown. Here, we investigated lnc-FAM84B-4 and DUSP1 to systematically elucidate their underlying roles in MAPK singling pathway and functions in CRC. Upregulated lnc-FAM84B-4 was identified by re-mining CRC microarray. Functional assays were performed in vitro and in vivo. RNA-Seq, RNA pull-down, and RIP assays were used to investigate the mechanisms of Lnc-FAM84B-4 in regulating expression of DUSP1. The results indicated that Lnc-FAM84B-4 regulates MAPK pathway by restraining DUSP1 expression. Mechanistically, RNA pull-down followed by mass spectrum determined hnRNPK functions as a binding partner of lnc-FAM84B-4 in mediating DUSP1 expression. Our findings demonstrate the important role of lnc-FAM84B-4-hnRNPK-DUSP1 axis in CRC development, and suggest a therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Wen Peng
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Chuan Zhang
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Jianing Peng
- Nanjing Foreign Language School, British Columbia Academy, Nanjing, Jiangsu, 210008, PR China
| | - Yuanjian Huang
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Chaofan Peng
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yuqian Tan
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Dongjian Ji
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yue Zhang
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Dongsheng Zhang
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Junwei Tang
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yifei Feng
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yueming Sun
- The First School of Clinical Medicine, Nanjing Medical University, PR China, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
14
|
Nie L, Cai SY, Sun J, Chen J. MicroRNA-155 promotes pro-inflammatory functions and augments apoptosis of monocytes/macrophages during Vibrio anguillarum infection in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:70-81. [PMID: 30447432 DOI: 10.1016/j.fsi.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Upon recognition of pathogen-associated molecular patterns by pattern-recognition receptors, immune cells are recruited, and multiple antibacterial/viral signaling pathways are activated, leading to the production of immune-related cytokines, chemokines, and interferons along with further activation of the adaptive immune response. MicroRNAs (miRs) play essential roles in regulating such immune signaling pathways, as well as the biological activities of immune cells; however, knowledge regarding the roles of miRs in the immune-related function of monocytes/macrophages (MO/MΦ) remains limited in teleosts. In the present study, we addressed the effects of miR-155 on Vibrio anguillarum-infected MO/MΦ. Our results showed that miR-155 augmented MO/MΦ expression of proinflammatory cytokines and attenuated the expression of anti-inflammatory cytokines. Additionally, the phagocytosis and bacteria-killing abilities of these cells were boosted by miR-155 administration, which also promoted M1-type polarization but inhibited M2-type polarization. Furthermore, the V. anguillarum-infection-induced apoptosis was also enhanced by miR-155 mimic transfection, which might have been due to excessive inflammation or the accumulation of reactive oxygen species. These results represent the first report providing a detailed account of the regulatory roles of miR-155 on MO/MΦ functions in teleosts and offer insight into the evolutionary history of miR-155-mediated regulation of host immune responses.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiao Sun
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
15
|
Wang M, Jiang S, Wu W, Yu F, Chang W, Li P, Wang K. Non-coding RNAs Function as Immune Regulators in Teleost Fish. Front Immunol 2018; 9:2801. [PMID: 30546368 PMCID: PMC6279911 DOI: 10.3389/fimmu.2018.02801] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins. ncRNAs function as key regulators of gene expression and chromatin modification. Recently, the functional role of ncRNAs in teleost fish has been extensively studied. Teleost fish are a highly diverse group among the vertebrate lineage. Fish are also important in terms of aquatic ecosystem, food production and human life, being the source of animal proteins worldwide and models of biomedical research. However, teleost fish always suffer from the invasion of infectious pathogens including viruses and bacteria, which has resulted in a tremendous economic loss to the fishing industry worldwide. Emerging evidence suggests that ncRNAs, especially miRNAs and lncRNAs, may serve as important regulators in cytokine and chemokine signaling, antigen presentation, complement and coagulation cascades, and T cell response in teleost fish. In this review, we summarize current knowledge and understanding of the roles of both miRNAs and lncRNAs in immune regulation in teleost fish. Molecular mechanism insights into the function of ncRNAs in fish immune response may contribute to the development of potential biomarkers and therapeutic targets for the prevention and treatment of fish diseases.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|