1
|
Li Y, Lian X, Yang W, Leng J, Sun J, Liu Y, Fan S, Wang L, Song L. A novel DM9-containing protein 7 involved in regulating the expression of CgMyD88 and CgIL-17 in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105076. [PMID: 37802234 DOI: 10.1016/j.dci.2023.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
The DM9-containing proteins have been identified as pattern recognition receptors (PRRs) to recognize invading pathogens and subsequently mediate downstream signal pathways, playing essential roles in innate immune responses of molluscs. In the present study, a novel DM9-containing protein (named as CgDM9CP-7) was identified from Pacific oyster Crassostrea gigas, which contained two tandem DM9 repeats similar to the previously identified CgDM9CPs. The mRNA transcripts of CgDM9CP-7 were found to be constitutively expressed in all the tested tissues including haemolymph, gill, hepatopancreas, mantle, adductor muscle and labial palp. The expression level of CgDM9CP-7 mRNA in haemocytes significantly up-regulated at 3 and 6 h after Vibrio splendidus stimulation, which was 5.67-fold (p < 0.01) and 4.71-fold (p < 0.05) of that in the control group, respectively, and it also increased significantly at 6 h (3.08-fold, p < 0.01) post lipopolysaccharide (LPS) stimulation. The protein of CgDM9CP-7 was mainly detected in membrane and cytoplasm of oyster haemocytes after V. splendidus stimulation. The recombinant CgDM9CP-7 protein (rCgDM9CP-7) displayed binding activities to MAN, LPS, PGN, Poly (I:C) as well as gram-negative bacteria (V. splendidus and Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus) and fungi (Pichia pastoris and Yarrowia lipolytica). rCgDM9CP-7 was able to agglutinate Bacillus subtilis, V. splendidus, E. coli and S. aureus, inhibit their growth, and bind the recombinant protein CgMyd88-2 (KD = 5.98 × 10-6 M) and CgMyd88s (KD = 8.5 × 10-7 M) in vitro as well. The transcripts of CgIL17-1 (0.45-fold of the control group, p < 0.01), CgIL17-2 (0.19-fold, p < 0.05), CgIL17-3 (0.54-fold, p < 0.05), CgIL17-5 (0.36-fold, p < 0.05) and CgIL17-6 (0.24-fold, p < 0.01) in CgDM9CP-7-siRNA oysters decreased significantly at 6 h after V. splendidus stimulation. These results collectively indicated that CgDM9CP-7 was involved in the regulation of CgMyD88 and CgIL-17 expression in the immune response of oyster.
Collapse
Affiliation(s)
- Yinan Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingye Lian
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Siqi Fan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Hao P, Han L, Quan Z, Jin X, Li Y, Wu Y, Zhang X, Wang W, Gao C, Wang L, Wang H, Zhang W, Chang Y, Ding J. Integrative mRNA-miRNA interaction analysis associated with the immune response of Strongylocentrotus intermedius to Vibrio harveyi infection. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108577. [PMID: 36773712 DOI: 10.1016/j.fsi.2023.108577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Strongylocentrotus intermedius is one of the most economically valuable sea urchin species in China and has experienced mass mortality owing to outbreaks of bacterial diseases such as black mouth disease. This has caused serious economic losses to the sea urchin farming industry. To investigate the immune response mechanism of S. intermedius with different tube feet colors in response to Vibrio harveyi infection, we examined the different tube feet-colored S. intermedius under V. harveyi challenge and compared their transcriptome and microRNA (miRNA) profiles using RNA-Seq. We obtained 1813 differentially expressed genes (DEGs), 28 DE miRNAs, and 303 DE miRNA-DEG pairs in different tube feet-colored S. intermedius under V. harveyi challenge. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the most significant DEGs were associated with the Notch signaling and phagosome pathways. The target genes of immune-related miRNAs (miR-71, miR-184, miR-193) and genes (CALM1, SPSB4, DMBT, CSRP1) in S. intermedius were predicted and validated. This study provides insight into the molecular mechanisms that regulate genes involved in the immune response of S. intermedius infected with V. harveyi.
Collapse
Affiliation(s)
- Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Lingshu Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; Ningbo University, Ningbo, Zhejiang, 315832, PR China
| | - Zijiao Quan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Xin Jin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yanglei Wu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Wenpei Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Chuang Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Heng Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
3
|
de la Ballina NR, Maresca F, Cao A, Villalba A. Bivalve Haemocyte Subpopulations: A Review. Front Immunol 2022; 13:826255. [PMID: 35464425 PMCID: PMC9024128 DOI: 10.3389/fimmu.2022.826255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Bivalve molluscs stand out for their ecological success and their key role in the functioning of aquatic ecosystems, while also constituting a very valuable commercial resource. Both ecological success and production of bivalves depend on their effective immune defence function, in which haemocytes play a central role acting as both the undertaker of the cellular immunity and supplier of the humoral immunity. Bivalves have different types of haemocytes, which perform different functions. Hence, identification of cell subpopulations and their functional characterisation in immune responses is essential to fully understand the immune system in bivalves. Nowadays, there is not a unified nomenclature that applies to all bivalves. Characterisation of bivalve haemocyte subpopulations is often combined with 1) other multiple parameter assays to determine differences between cell types in immune-related physiological activities, such as phagocytosis, oxidative stress and apoptosis; and 2) immune response to different stressors such as pathogens, temperature, acidification and pollution. This review summarises the major and most recent findings in classification and functional characterisation of the main haemocyte types of bivalve molluscs.
Collapse
Affiliation(s)
- Nuria R. de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - Francesco Maresca
- MARE - Marine and Environmental Sciences Centre, Laboratório de Ciências do Mar, Universidade de Évora, Sines, Portugal
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Alcalá de Henares, Spain
- Research Centre for Experimental Marine Biology and Biotechnology, Plentziako Itsas Estazioa (PIE), University of the Basque Country (UPV/EHU), Plentzia, Spain
- *Correspondence: Antonio Villalba,
| |
Collapse
|
4
|
Qiao X, Wang L, Song L. The primitive interferon-like system and its antiviral function in molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103997. [PMID: 33444647 DOI: 10.1016/j.dci.2021.103997] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The phylum mollusca is a very important group in the animal kingdom for the large number and diversified species. Recently, interest in molluscan immunity has increased due to their phylogenetic position and importance in worldwide aquaculture and aquatic environment. As the main aquaculture animal, most molluscs live in the water environment and they have to cope with many pathogen challenges, in which virus is one of the primary causes for the mass mortality. In vertebrates, interferon (IFN) system is generally recognized as the first line of defence against viral infection, while the antiviral mechanisms in molluscs remain to be clearly illuminated. Recently, some IFN-like proteins and IFN-related components have been characterized from molluscs, such as pattern recognition receptors (PRRs), interferon regulatory factors (IRFs), IFN-like receptors, JAK/STAT and IFN-stimulated genes (ISGs), which reinforce the existence of IFN-like system in molluscs. This system can be activated by virus or poly (I:C) challenges and further regulate the antiviral response of haemocytes in molluscs. This review summarizes the research progresses of IFN-like system in molluscs with the emphases on the uniformity and heterogeneity of IFN-like system of molluscs compared to that of other animals, which will be helpful for elucidating the antiviral modulation in molluscs and understanding the origin and evolution of IFN system.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Abbas MN, Kausar S, Zhao E, Cui H. Suppressors of cytokine signaling proteins as modulators of development and innate immunity of insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103561. [PMID: 31785267 DOI: 10.1016/j.dci.2019.103561] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The suppressors of cytokine signaling (SOCS) are a family of intracellular molecules. Many members of this family have been reported to be involved in various physiological processes in invertebrates and vertebrates (e.g., developmental process and immune response). The functions of SOCS molecules seem to remain conserved in animals throughout evolutionary history. The members of the SOCS family play vital roles in the physiological processes by regulating the extent and duration of signaling activities of both Janus Kinase-Signal Transducer and Activators of Transcription (JAK-STAT) and epidermal growth factor receptor (EGFR) pathways in vivo. So far, in different insect species, a variable number of SOCS and SOCS box domain-containing proteins have been identified. These proteins are categorized into different types based on their sequence diversification, leading to an alteration in structure and regulatory function. The biological roles of the many SOCS proteins have been established as a negative or positive regulator of the signaling pathways, as mentioned earlier. Here, we discussed the existing knowledge on the SOCS proteins and their involvement in different biological functions in insects, and future perspectives to further elucidate their physiological roles.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China.
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agricultural and Rural Affairs, Southwest University, Chongqing, 400715, China; Medical Research Institute, Southwest University, Chongqing, 400715, China.
| |
Collapse
|