1
|
Bowhay CR, Hanington PC. Animal granulins: In the GRN scheme of things. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105115. [PMID: 38101714 DOI: 10.1016/j.dci.2023.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Granulins are conserved in nearly all metazoans, with an intriguing loss in insects. These pleiotropic peptides are involved in numerous physiological and pathological processes yet have been overwhelmingly examined in mammalian systems. While work in other animal models has been informative, a richer understanding of the proteins should be obtained by integrating knowledge from all available contexts. The main bodies of work described here include 1) the structure-function relationships of progranulin and its cleavage products, 2) the role of expanded granulin gene families and different isoforms in fish immunology, 3) the release of granulin peptides to promote host angiogenesis by parasitic worms, 4) a diversity of molluscan uses for granulins, including immune activation in intermediate hosts to trematodes, 5) knowledge gained on lysosomal functions from C. elegans and the stress-related activities of granulins. We provide an overview of functional reports across the Metazoa to inform much-needed future research.
Collapse
Affiliation(s)
- Christina R Bowhay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Patrick C Hanington
- School of Public Health, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
2
|
Wongdontri C, Jaree P, Somboonwiwat K. PmKuSPI is regulated by pmo-miR-bantam and contributes to hemocyte homeostasis and viral propagation in shrimp. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108738. [PMID: 37031922 DOI: 10.1016/j.fsi.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/22/2023]
Abstract
The Kunitz-type serine protease inhibitor (KuSPI) is a low molecular weight protein that plays a role in modulating a range of biological processes. In Penaeus monodon, the PmKuSPI gene has been found to be highly expressed in the white spot syndrome virus (WSSV)-infected shrimp and is predicted to be regulated by a conserved microRNA, pmo-miR-bantam. We reported that, despite being upregulated at the transcriptional level, the PmKuSPI protein was also upregulated after WSSV infection. Silencing the PmKuSPI gene in healthy shrimp had no effect on phenoloxidase activity or apoptosis but resulted in a delay in the mortality of WSSV-infected shrimp as well as a reduction in the total hemocyte number and WSSV copies. According to an in vitro luciferase reporter assay, the pmo-miR-bantam bound to the 3'UTR of the PmKuSPI gene as predicted. In accordance with the loss of function studies using dsRNA-mediated RNA interference, the administration of the pmo-miR-bantam mimic into WSSV-infected shrimp lowered the expression of the PmKuSPI transcript and the PmKuSPI protein, as well as the WSSV copy number. According to these results, the protease inhibitor PmKuSPI is posttranscriptionally controlled by pmo-miR-bantam and plays a role in hemocyte homeostasis, which in turn affects shrimp susceptibility to WSSV infection.
Collapse
Affiliation(s)
- Chantaka Wongdontri
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, Thailand
| | - Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, Thailand.
| |
Collapse
|
3
|
Alba A, Vázquez AA, Sánchez J, Gourbal B. Immunological Resistance of Pseudosuccinea columella Snails From Cuba to Fasciola hepatica (Trematoda) Infection: What We Know and Where We Go on Comparative Molecular and Mechanistic Immunobiology, Ecology and Evolution. Front Immunol 2022; 13:794186. [PMID: 35140717 PMCID: PMC8818719 DOI: 10.3389/fimmu.2022.794186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most interesting biological models is that of snail-trematode interactions, many of which ultimately result in the transmission of several important diseases, particularly in the tropics. Herein, we review the scientific advances on a trematode-snail system in which certain populations of Pseudosuccinea columella (a common host species for trematodes) have been demonstrated naturally-resistant to Fasciola hepatica, in association with an effective encapsulation of the parasite by innate immune cells of the host, the hemocytes. Emphasis is made on the molecular and immunological features characterizing each P. columella phenotype in relation to their anti-parasitic competence, their distinctive ecological patterns and the existence of a significant cost of resistance. An integrative overview of the resistance to F. hepatica through comparative immunobiology, genetics and ecology is presented to hypothesize on the possible origins and evolution of this phenomenon and to postulate significant roles for parasite mediated-selection and environmental factors in shaping and maintaining the resistant phenotype in the field. Lastly, clues into future experimental perspectives to deeply characterize the interplay between P. columella and F. hepatica and the immunobiology of the resistance are also included. The advances revised in the present paper are only beginning to unravel mechanisms of anti-parasite innate defense responses and their evolutionary bases, and can facilitate the development of prospective approaches towards practical applications of P. columella resistance.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Antonio A. Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
4
|
Vázquez AA, Alba A, Alda P, Vittecoq M, Hurtrez-Boussès S. On the arrival of fasciolosis in the Americas. Trends Parasitol 2021; 38:195-204. [PMID: 34952798 DOI: 10.1016/j.pt.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Fasciola hepatica is a worldwide emerging and re-emerging parasite heavily affecting several regions in South America. Some lymnaeid snail species of American origin are among the major hosts of F. hepatica worldwide. Recent paleoparasitological findings detected its DNA in a 2300-year-old sample in Patagonia, countering the common hypothesis of the recent arrival of F. hepatica in the Americas during European colonization. Thus, the theory of an initial introduction in the 1500s can no longer be sustained. This article discusses how it was possible for F. hepatica to reach and spread in the Americas in relation to the availability and compatibility of hosts through natural and incidental introductions. Our study will serve to better understand the ongoing Neotropical scenario of fasciolosis.
Collapse
Affiliation(s)
- Antonio A Vázquez
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France; Laboratorio de Malacología, Instituto de Medicina Tropical 'Pedro Kourí', La Habana, Cuba.
| | - Annia Alba
- Laboratorio de Malacología, Instituto de Medicina Tropical 'Pedro Kourí', La Habana, Cuba
| | - Pilar Alda
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France; Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Bahía Blanca, Argentina
| | - Marion Vittecoq
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France; Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France; CREES, Montpellier, France
| | - Sylvie Hurtrez-Boussès
- MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France; CREES, Montpellier, France; Département de Biologie-Écologie, Faculté des Sciences, Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Zhang Y, Xu S, Jiang N, Tang H, Dong H, Zhao QP. Morphology and activities of cell populations of haemocytes in Oncomelania hupensis following Schistosoma japonicum infection. J Invertebr Pathol 2021; 181:107590. [PMID: 33872572 DOI: 10.1016/j.jip.2021.107590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
Oncomelania hupensis is the only obligatory intermediate host of Schistosoma japonicum, the pathogen of zoonosis schistosomiasis. Haemocytes play a critical role in the cellular immune defence of O. hupensis against S. japonicum challenge. Here, the morphology and classification of haemocytes of O. hupensis were investigated by Giemsa staining and light microscopy, combining with the scanning and transmission electron microscopy and flow cytometry. Granulocytes and hyalinocytes were confirmed as two main types of haemocytes, account for ~ 10% and ~ 90% of all haemocytes, with size varying in 4.3-10.9 μm and 0.4-30.8 μm, respectively. Subpopulations can be identified further by granule feature, shape, size, and surface and inner structure of cells. The heterogeneity in morphology implied varied developmental process and function of haemocyte subpopulations. After the S. japonicum challenge, haemocytes of O. hupensis respond to S. japonicum invasion immediately. The dynamic change of haemocyte subpopulations indicates that the small hyalinocyte could differentiate into a larger one or granulocyte after S. japonicum challenge, and the granulocytes and larger hyalinocytes play leading roles in early defence reaction, but in different ways. Phagocytosis and apoptosis of haemocytes in O. hupensis were proved to be related to immune defence against S. japonicum, with the combined effect of granulocytes and larger hyalinocytes. However, the main pathway of each subpopulation to take effect in different periods need further investigation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Sha Xu
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ni Jiang
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Hongbin Tang
- Center for Animal Experiment of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Huifen Dong
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Qin-Ping Zhao
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
6
|
Alba A, Vazquez AA, Hurtrez-Boussès S. Towards the comprehension of fasciolosis (re-)emergence: an integrative overview. Parasitology 2021; 148:385-407. [PMID: 33261674 PMCID: PMC11010171 DOI: 10.1017/s0031182020002255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
The increasing distribution and prevalence of fasciolosis in both human and livestock are concerning. Here, we examine the various types of factors influencing fasciolosis transmission and burden and the interrelations that may exist between them. We present the arsenal of molecules, 'adjusting' capabilities and parasitic strategies of Fasciola to infect. Such features define the high adaptability of Fasciola species for parasitism that facilitate their transmission. We discuss current environmental perturbations (increase of livestock and land use, climate change, introduction of alien species and biodiversity loss) in relation to fasciolosis dynamics. As Fasciola infection is directly and ultimately linked to livestock management, living conditions and cultural habits, which are also changing under the pressure of globalization and climate change, the social component of transmission is also discussed. Lastly, we examine the implication of increasing scientific and political awareness in highlighting the current circulation of fasciolosis and boosting epidemiological surveys and novel diagnostic techniques. From a joint perspective, it becomes clear that factors weight differently at each place and moment, depending on the biological, environmental, social and political interrelating contexts. Therefore, the analyses of a disease as complex as fasciolosis should be as integrative as possible to dissect the realities featuring each epidemiological scenario. Such a comprehensive appraisal is presented in this review and constitutes its main asset to serve as a fresh integrative understanding of fasciolosis.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical ‘Pedro Kourí’, Havana, Cuba
| | - Antonio A. Vazquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical ‘Pedro Kourí’, Havana, Cuba
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
7
|
Adema CM, Hillyer JF. Immunity in invertebrate disease vectors: Editorial introduction to the special issue. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103684. [PMID: 32194143 DOI: 10.1016/j.dci.2020.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|