1
|
Ferez-Puche M, Serna-Duque JA, Cuesta A, Sánchez-Ferrer Á, Esteban MÁ. Identification of a Novel β-Defensin Gene in Gilthead Seabream (Sparus aurata). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1219-1230. [PMID: 39259315 PMCID: PMC11541337 DOI: 10.1007/s10126-024-10367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The excessive use of antibiotics in aquaculture favors the natural selection of multidrug-resistant bacteria, and antimicrobial peptides (AMPs) could be a promising alternative to this problem. The most studied AMPs in teleost fish are piscidins, hepcidins, and β-defensins. In this work, we have found a new gene (defb2) encoding a type 2 β-defensin in the genome of gilthead seabream, a species chosen for its economic interest in aquaculture. Its open reading frame (192 bp) encodes a protein (71 amino acids) that undergoes proteolytic cleavage to obtain the functional mature peptide (42 amino acids). The genetic structure in three exons and two introns and the six characteristic cysteines are conserved as the main signature of this protein family. In the evolutionary analysis, synteny shows a preservation of chromosomal localization and the phylogenetic tree constructed exposes the differences between both types of β-defensin as well as the similarities between seabream and European seabass. In relation to its basal expression, β-defensin 2 is mostly expressed in the intestine, thymus, skin, and gonads of the gilthead seabream (Sparus aurata). In head kidney leucoytes (HKLs), the expression was very low and did not change significantly when stimulated with various immunocompetent agents. However, the expression was significantly down-regulated in the liver, head-kidney, and blood 4 h post-injection with the fish pathogen Vibrio harveyi. When infected with nodavirus, the expression was downregulated in brain at 7 days post-infection. These results denote a possible complementarity between the expression patterns of β-defensins and hepcidins. Further studies are needed to analyze gene duplications and expression patterns of β-defensins and describe their mechanism of action in seabream and other teleost fish.
Collapse
Affiliation(s)
- M Ferez-Puche
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Jhon A Serna-Duque
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Velumani K, Arasu A, Issac PK, Kishore Kumar MS, Guru A, Arockiaraj J. Advancements of fish-derived peptides for mucormycosis: a novel strategy to treat diabetic compilation. Mol Biol Rep 2023; 50:10485-10507. [PMID: 37917415 DOI: 10.1007/s11033-023-08882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Mucormycosis, an extremely fatal fungal infection, is a major hurdle in the treatment of diabetes consequences. The increasing prevalence and restricted treatment choices urge the investigation of novel therapeutic techniques. Because of their effective antimicrobial characteristics and varied modes of action, fish-derived peptides have lately emerged as viable options in the fight against mucormycosis. This review examines the potential further application of fish-derived peptides in diagnosing and managing mucormycosis in relation to diabetic complications. First, we examine the pathophysiology of mucormycosis and the difficulties in treating it in diabetics. We emphasize the critical need for alternative therapeutic methods for tackling the limitations of currently available antifungal medicines. The possibility of fish-derived peptides as an innovative approach to combat mucormycosis is then investigated. These peptides, derived from several fish species, provide wide antimicrobial properties against a variety of diseases. They also have distinct modes of action, such as rupture of cell membranes, suppression of development, and modification of the host immunological response. Furthermore, we investigate the problems and prospects connected with the clinical application of fish-derived peptides. Ultimately, future advances in fish-derived peptides, offer interesting avenues for the management of mucormycosis in the context of diabetic comorbidities. More research and clinical trials are needed to properly investigate these peptide's therapeutic potential and pave the way for their adoption into future antifungal therapies.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602 105, India.
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
McGrath L, O'Keeffe J, Slattery O. Antimicrobial peptide gene expression in Atlantic salmon (Salmo salar) seven days post-challenge with Neoparamoeba perurans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104287. [PMID: 34619176 DOI: 10.1016/j.dci.2021.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Amoebic gill disease in teleost fish is caused by the marine parasite Neoparamoeba perurans. To date, the role of antimicrobial peptides β-defensins and cathelicidins in this infection have not been explored. Using a high-throughput microfluidics quantitative polymerase chain reaction system (Biomark HD™ by Fluidigm), this study aimed to: firstly, to investigate organ-specific expression of antimicrobial peptide genes β-defensin-1, -3 and -4 and cathelicidin 2 in healthy Atlantic salmon; secondly, to compare the expression of these antimicrobial peptide genes in healthy versus asymptomatic Atlantic salmon seven days post-challenge with Neoparamoeba perurans. Results from this study indicate expression of the β-defensin and cathelicidin genes in the selected organs from healthy Atlantic salmon. Furthermore, a statistically significant upregulation of β-defensins -3 and -4 and cathelicidin 2 was detected in gill of parasite-challenged salmon. The upregulated cathelicidin and β-defensin genes in gill could indicate novel potential roles in innate immune responses to Neoparamoeba perurans.
Collapse
Affiliation(s)
- Leisha McGrath
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland
| | - Joan O'Keeffe
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland
| | - Orla Slattery
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland.
| |
Collapse
|
4
|
Fei C, Nie L, Zhang J, Chen J. Potential Applications of Fluorescence-Activated Cell Sorting (FACS) and Droplet-Based Microfluidics in Promoting the Discovery of Specific Antibodies for Characterizations of Fish Immune Cells. Front Immunol 2021; 12:771231. [PMID: 34868030 PMCID: PMC8635192 DOI: 10.3389/fimmu.2021.771231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Akin to their mammalian counterparts, teleost fish possess a complex assortment of highly specialized immune cells that are capable of unleashing potent innate immune responses to eradicate or mitigate incoming pathogens, and also differentiate into memory lymphocytes to provide long-term protection. Investigations into specific roles and functions of fish immune cells depend on the precise separation of each cell type. Commonly used techniques, for example, density gradient centrifugation, rely on immune cells to have differing sizes or densities and thus fail to separate between similar cell types (e.g. T and B lymphocytes). Furthermore, a continuously growing database of teleost genomic information has revealed an inventory of cellular markers, indicating the possible presence of immune cell subsets in teleost fish. This further complicates the interpretation of results if subsets of immune cells are not properly separated. Consequently, monoclonal antibodies (mAbs) against specific cellular markers are required to precisely identify and separate novel subsets of immune cells in fish. In the field of fish immunology, mAbs are largely generated using the hybridoma technology, resulting in the development of mAbs against specific cellular markers in different fish species. Nevertheless, this technology suffers from being labour-intensive, time-consuming and most importantly, the inevitable loss of diversities of antibodies during the fusion of antibody-expressing B lymphocytes and myeloma cells. In light of this, the focus of this review is to discuss the potential applications of fluorescence-activated cell sorting and droplet-based microfluidics, two emerging technologies capable of screening and identifying antigen-specific B lymphocytes in a high-throughput manner, in promoting the development of valuable reagents for fish immunology studies. Our main goal is to encourage the incorporation of alternative technologies into the field of fish immunology to promote the production of specific antibodies in a high-throughput and cost-effective way, which could better allow for the precise separation of fish immune cells and also facilitate the identification of novel immune cell subsets in teleost fish.
Collapse
Affiliation(s)
- Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jianhua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Barroso C, Carvalho P, Gonçalves JFM, Rodrigues PNS, Neves JV. Antimicrobial Peptides: Identification of two Beta-Defensins in a Teleost Fish, the European Sea Bass ( Dicentrarchus labrax). Pharmaceuticals (Basel) 2021; 14:ph14060566. [PMID: 34198571 PMCID: PMC8231796 DOI: 10.3390/ph14060566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Beta-defensins consist in a group of cysteine-rich antimicrobial peptides (AMPs), widely found throughout vertebrate species, including teleost fish, with antimicrobial and immunomodulatory activities. However, although the European sea bass (Dicentrarchus labrax) is one of the most commercially important farmed fish species in the Mediterranean area, the characterization of its beta-defensins and its potential applications are still missing. In this study, we characterized two members of the beta-defensin family in this species. Phylogenetic and synteny analysis places sea bass peptides in the beta-defensin subfamilies 1 and 2, sharing similar features with the other members, including the six cysteines and the tertiary structure, that consists in three antiparallel beta-sheets, with beta-defensin 1 presenting an extra alpha-helix at the N-terminal. Further studies are necessary to uncover the functions of sea bass beta-defensins, particularly their antimicrobial and immunomodulatory properties, in order to develop novel prophylactic or therapeutic compounds to be used in aquaculture production.
Collapse
Affiliation(s)
- Carolina Barroso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
- Correspondence:
| | - Pedro Carvalho
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| | - José F. M. Gonçalves
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Porto, Portugal
| | - Pedro N. S. Rodrigues
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| | - João V. Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (P.N.S.R.); (J.V.N.)
- Iron and Innate Immunity, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; (P.C.); (J.F.M.G.)
| |
Collapse
|
6
|
Dhanya Lenin KL, Iyer RV, Raveendran A, Anju MV, Philip R, Antony SP. β-Defensins from common goby (Pomatoschistus microps) and silver trevally (Pseudocaranx georgianus): Molecular characterization and phylogenetic analysis. Mol Biol Rep 2021; 48:4943-4951. [PMID: 34061328 DOI: 10.1007/s11033-021-06435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/26/2021] [Indexed: 11/27/2022]
Abstract
Antimicrobial peptides (AMPs) are biologically active molecules involved in host defense present in a variety of organisms. They are an integral component of innate immunity, forming a front line of defense against potential pathogens, including antibiotic-resistant ones. Fishes are proven to be a prospective source of AMPs as they are constantly being challenged by a variety of pathogens and the AMPs are reported to play an inevitable role in fish immunity. Among them, β-defensins form one of the most studied multifunctional peptides with early evolutionary history and recently being considered as host defense peptides. The present study highlights the first-ever report on β-defensin AMP sequences from common goby (Pomatoschistus microps) and silver trevally (Pseudocaranx georgianus). A 192 bp cDNA fragment with an open reading frame encoding 63 amino acids (aa) comprising a 20 aa signal peptide region at the N-terminal was obtained from the mRNA of gill tissue of both P. microps and P. georgianus by RT-PCR. These peptide sequences when characterized in silico at the molecular level revealed a 43 aa cationic mature peptide with the signature intra-molecular disulphide bonded cysteine residue pattern ascertaining its β-defensin identity, further confirmed by phylogenetic analysis. The data collected will pave the way for further research on varied facets of the peptide-like, tissue level expressions, antimicrobial activities on commonly encountered pathogens, and its feasibility as a therapeutant in the aquaculture scenario.
Collapse
Affiliation(s)
- K L Dhanya Lenin
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rajeswary Vasu Iyer
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Athira Raveendran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
7
|
Li K, Li W, Chen X, Luo T, Mu Y, Chen X. Molecular and functional identification of a β-defensin homolog in large yellow croaker (Larimichthys crocea). JOURNAL OF FISH DISEASES 2021; 44:391-400. [PMID: 33340371 DOI: 10.1111/jfd.13324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
β-defensin (BD) is a cysteine-rich cationic antibacterial peptide that is active against a wide range of bacteria. Here, a β-defensin homolog (LcBD2) was identified in large yellow croaker (Larimichthys crocea). The open reading frame of LcBD2 contains 195 nucleotides, encoding a protein of 64 amino acids that possesses a typical arrangement of six conserved cysteine residues (C31 , C37 , C41 , C53 , C59 and C60 ). LcBD2 transcripts were constitutively expressed in all examined tissues and significantly increased in head kidney, spleen and gills by Vibrio alginolyticus. The synthetic LcBD2 peptide imparted antimicrobial effects on both Gram-negative bacteria (V. campbellii, V. parahaemolyticus, V. alginolyticus, V. harveyi and Pseudomonas plecoglossicida) and Gram-positive bacteria (Bacillus subtilis). We also observed that after treatment with synthetic LcBD2 peptide, numerous blisters appeared on the membrane of P. plecoglossicida, which in turn may result in cell membrane breakage and bacterial death. Moreover, the synthetic LcBD2 peptide significantly upregulated the expression levels of TNF-α2, IL-1β and CXCL8_L1 in monocytes/macrophages, while downregulated expression level of IL-10. The LcBD2 peptide also remarkedly enhanced the phagocytosis of monocytes/macrophages. These results indicate that LcBD2 not only protects large yellow croaker against multiple bacterial pathogens but also plays a role in activation of monocytes/macrophages.
Collapse
Affiliation(s)
- Kexin Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
8
|
Bjørgen H, Li Y, Kortner TM, Krogdahl Å, Koppang EO. Anatomy, immunology, digestive physiology and microbiota of the salmonid intestine: Knowns and unknowns under the impact of an expanding industrialized production. FISH & SHELLFISH IMMUNOLOGY 2020; 107:172-186. [PMID: 32979510 DOI: 10.1016/j.fsi.2020.09.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Increased industrialized production of salmonids challenges aspects concerning available feed resources and animal welfare. The immune system plays a key component in this respect. Novel feed ingredients may trigger unwarranted immune responses again affecting the well-being of the fish. Here we review our current knowledge concerning salmon intestinal anatomy, immunity, digestive physiology and microbiota in the context of industrialized feeding regimes. We point out knowledge gaps and indicate promising novel technologies to improve salmonid intestinal health.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Yanxian Li
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Trond M Kortner
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Åshild Krogdahl
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Erling Olaf Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
9
|
Brunner SR, Varga JFA, Dixon B. Antimicrobial Peptides of Salmonid Fish: From Form to Function. BIOLOGY 2020; 9:E233. [PMID: 32824728 PMCID: PMC7464209 DOI: 10.3390/biology9080233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are small, usually cationic, and amphiphilic molecules that play a crucial role in molecular and cellular host defense against pathogens, tissue damage, and infection. AMPs are present in all metazoans and several have been discovered in teleosts. Some teleosts, such as salmonids, have undergone whole genome duplication events and retained a diverse AMP repertoire. Salmonid AMPs have also been shown to possess diverse and potent antibacterial, antiviral, and antiparasitic activity and are induced by a variety of factors, including dietary components and specific molecules also known as pathogen-associated molecular patterns (PAMPs), which may activate downstream signals to initiate transcription of AMP genes. Moreover, a multitude of cell lines have been established from various salmonid species, making it possible to study host-pathogen interactions in vitro, and several of these cell lines have been shown to express various AMPs. In this review, the structure, function, transcriptional regulation, and immunomodulatory role of salmonid AMPs are highlighted in health and disease. It is important to characterize and understand how salmonid AMPs function as this may lead to a better understanding of host-pathogen interactions with implications for aquaculture and medicine.
Collapse
Affiliation(s)
- Sascha R. Brunner
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Joseph F. A. Varga
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| |
Collapse
|