1
|
Kong T, Fang Y, Fan X, Li S. KCMF1-like suppresses white spot syndrome virus infection by promoting apoptosis in mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109158. [PMID: 37832749 DOI: 10.1016/j.fsi.2023.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Potassium channel modulatory factor 1 (KCMF1), an E3 ubiquitin ligase, plays a vital role in renal tubulogenesis, preeclampsia, and tumor development in mammals. Nevertheless, the function of KCMF1 in invertebrates remains to be investigated. Here, we identified KCMF1-like from Scylla paramamosian, encoding 242 amino acids with two zinc finger domains at the N-terminal. Real-time quantitative PCR analysis revealed that KCMF1-like was expressed in all tested tissues, including hemocytes, brain, mid-intestine, subcuticular epidermis, gills, muscle, heart, and stomach, with higher levels in muscle and mid-intestine. KCMF1-like was up-regulated in the hemocytes of mud crabs challenged with white spot syndrome virus (WSSV). RNA interference (RNAi) was performed to investigate the impact of KCMF1-like on the proliferation of WSSV in mud crabs. Knock-down of KCMF1-like resulted in an increase of the WSSV copy number and an impairment of the hemocytes apoptosis rate in vivo. In addition, KCMF1-like could also affect the mitochondrial membrane potential. Collectively, these results revealed that KCMF1-like might play a crucial role in the defense against virus infection in mud crab. This study contributes a novel insight into the role of KCMF1-like in the antiviral immune defense mechanism in crustaceans.
Collapse
Affiliation(s)
- Tongtong Kong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Yameng Fang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xinyue Fan
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China
| |
Collapse
|
2
|
Tran NT, Liang H, Li J, Deng T, Bakky MAH, Zhang M, Li S. Cellular responses in crustaceans under white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108984. [PMID: 37549875 DOI: 10.1016/j.fsi.2023.108984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Innate immunity plays the most important system responsible for protecting crustaceans against invading pathogens. White spot syndrome virus (WSSV) is considered a serious pathogen in crustaceans with high cumulative mortality and morbidity in infected animals. Understanding the mechanism of the response of hosts to WSSV infection is necessary, which is useful for effective prevention in controlling infection. In this review, we summarize the participation of signaling pathways (toll, immune deficiency, JAK/STAT, endocytosis, mitogen-activated protein kinase, PI3K/Akt/mTOR, cGAS-STING, Wingless/Integrated signal transduction, and prophenoloxidase (proPO) cascade) and the activity of cells (apoptosis, autophagy, as well as, reactive oxygen species and antioxidant enzymes) in the cellular-mediated immune response of crustaceans during WSSV infection. The information presented in this current review is important for a better understanding of the mechanism of the response of hosts to pathogens. Additionally, this provides a piece of basic knowledge for discovering approaches to strengthen the immune system and resistance of cultured animals against viral infections.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
3
|
Tran NT, Zhou Y, Chen L, Sun Z, Li S. SpBNIP3 regulates apoptosis and autophagy in mud crab (Scylla paramamosain) during white spot syndrome virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104465. [PMID: 35690229 DOI: 10.1016/j.dci.2022.104465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3), which is a pro-apoptotic protein in the BCL-2 family involves a variety of cell signaling pathways, including mitochondrial dysfunction, mitochondrial autophagy, and apoptosis in vertebrates. However, the role of BNIP3 in the regulation of apoptosis and/or autophagy in crustaceans suffering virus infection is still limited. In this study, the mud crab (Scylla paramamosain) BNIP3 (SpBNIP3) was identified and studied to elucidate its association with the white spot syndrome virus (WSSV) infection. SpBNIP3 was widely expressed in all tested tissues and significantly down-regulated in the hemocytes of mud crab after WSSV infection. Knockdown of SpBNIP3 using RNA interference increased the apoptosis rate and Caspase 3 activity but decreased the mitochondrial membrane potential and autophagy levels, as well as viral copy number in mud crabs infected with WSSV. Additionally, the relationship between the viral infection and the autophagy of hemocytes was observed. The level of autophagy was reduced upon WSSV infection, and the activation of autophagy enriched the viral copy number. Taken together, the results of this study provide a new finding on the mechanism that SpBNIP3 may participate in the WSSV infection through the regulation of apoptosis and autophagy processes in mud crabs.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yanlian Zhou
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Lianjie Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Zaiqiao Sun
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
4
|
Liu T, Lin S, Du Y, Gong Y, Li S. SpBAG3 assisted WSSV infection in mud crab (Scylla paramamosain) by inhibiting apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104349. [PMID: 35007655 DOI: 10.1016/j.dci.2022.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The function of B-cell lymphoma-2 (Bcl-2) family proteins can be divided into two categories: anti-apoptotic and pro-apoptotic. As an anti-apoptotic protein, Bcl2-associated athanogene 3 (BAG3) plays a key role in regulating apoptosis, development, cell movement, and autophagy, and mediating the adaptability of cells to stimulation. However, SpBAG3 has not been reported in mud crab (Scylla paramamosain), and the regulatory effect of SpBAG3 on apoptosis in mud crab and its function in antiviral immunity is still unknown. In this study, SpBAG3 was found, and characterized, which encoded a total of 175 amino acid (molecular mass 19.3 kDa), including a specific conserved domain of the BAG family. SpBAG3 was significantly down-regulated at 0-48 h post-infection with WSSV in vivo. The antiviral effect of SpBAG3 was investigated using RNA interference. The results indicated that SpBAG3 might be involved in assisting the replication of WSSV in the host. SpBAG3 could change the mitochondrial membrane potential (△ψm), and affect cell apoptosis through mitochondrial apoptotic pathways. Therefore, the results of this study suggested that SpBAG3 could assist WSSV infection by inhibiting the apoptosis of the hemocytes in mud crab.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shanmeng Lin
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yaoyao Du
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yi Gong
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
5
|
Abstract
p53, the guardian of the genome, is a short-lived protein that is tightly controlled at low levels by constant ubiquitination and proteasomal degradation in higher organisms. p53 stabilization and activation are early crucial events to cope with external stimuli in cells. However, the role of p53 ubiquitination and its relevant molecular mechanisms have not been addressed in invertebrates. In this study, our findings revealed that both HUWE1 (HECT, UBA, and WWE domain-containing E3 ubiquitin-protein ligase 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) could serve as E3 ubiquitin ligases for p53 in mud crabs (Scylla paramamosain). Moreover, the expression of HUWE1 and TRAF6 was significantly downregulated during white spot syndrome virus (WSSV) infection, and therefore the ubiquitination of p53 was interrupted, leading to the activation of apoptosis and reactive oxygen species (ROS) signals through p53 accumulation, which eventually suppressed viral invasion in the mud crabs. To the best of our knowledge, this is the first study to reveal the p53 ubiquitination simultaneously induced by two E3 ligases in arthropods, which provides a novel molecular mechanism of invertebrates for resistance to viral infection. IMPORTANCE p53, which is a well-known tumor suppressor that has been widely studied in higher animals, has been reported to be tightly controlled at low levels by ubiquitin-dependent proteasomal degradation. However, recent p53 ubiquitination-relevant research mainly involved an individual E3 ubiquitin ligase, but not whether there exist other mechanisms that need to be explored. The results of this study show that HUWE1 and TRAF6 could serve as p53 E3 ubiquitin ligases and synchronously mediate p53 ubiquitination in mud crabs (Scylla paramamosain), which confirmed the diversity of the p53 ubiquitination regulatory pathway. In addition, the effects of p53 ubiquitination are mainly focused on tumorigenesis, but a few are focused on the host immune defense in invertebrates. Our findings reveal that p53 ubiquitination could affect ROS and apoptosis signals to cope with WSSV infection in mud crabs, which is the first clarification of the immunologic functions and mechanisms of p53 ubiquitination in invertebrates.
Collapse
|
6
|
Li W, Wang Q. Recent progress in the research of exosomes and Dscam regulated crab antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103925. [PMID: 33217412 DOI: 10.1016/j.dci.2020.103925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Crustaceans, including crab and shrimp, generally lack lymphocytes or adaptive immunity, and they rely solely on innate immunity for pathogen defense. The white spot syndrome virus (WSSV) causes the most prevalent viral disease in penaeid shrimps, which are widely cultured species in coastal waters worldwide. Numerous studies have elucidated the role of the immune system in protecting shrimps from WSSV infection for the development of safe and effective defensive strategies against WSSV. Although WSSV has a wide host range, it appears to exhibit high pathogenicity and virulence in only penaeid shrimps. Crabs are interesting models for studying immune responses after WSSV infection. Therefore, we reviewed recent information on the innate immune responses of crabs to WSSV and mainly focused on the antiviral functions of exosome-mediated apoptosis and alternatively spliced Down syndrome cell adhesion molecule. Our review may provide novel insights into antiviral management for crustaceans, especially penaeid shrimps.
Collapse
Affiliation(s)
- Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|