1
|
Wang J, Amoah S, Stafford JL. A leukocyte immune-type receptor specific polyclonal antibody recognizes goldfish kidney leukocytes and activates the MAPK pathway in isolated goldfish kidney neutrophil-like cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105228. [PMID: 38997096 DOI: 10.1016/j.dci.2024.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Leukocyte immune-type receptors (LITRs) belong to a large family of teleost immunoregulatory receptors that share phylogenetic and syntenic relationships with mammalian Fc receptor-like molecules (FCRLs). Recently, several putative stimulatory Carassius auratus (Ca)-LITR transcripts, including CaLITR3, have been identified in goldfish. CaLITR3 has four extracellular immunoglobulin-like (Ig-like) domains, a transmembrane domain containing a positively charged histidine residue, and a short cytoplasmic tail region. Additionally, the calitr3 transcript is highly expressed by goldfish primary kidney neutrophils (PKNs) and macrophages (PKMs). To further investigate the immunoregulatory potential of CaLITR3 in goldfish myeloid cells, we developed and characterized a CaLITR3-epitope-specific polyclonal antibody (anti-CaL3.D1 pAb). We show that the anti-CaL3.D1 pAb stains various hematopoietic cell types within the goldfish kidney, as well as in PKNs and PKMs. Moreover, cross-linking of the anti-CaL3.D1-pAb on PKN membranes induces phosphorylation of p38 and ERK1/2, critical components of the MAPK pathway involved in controlling a wide variety of innate immune effector responses such as NETosis, respiratory burst, and cytokine release. These findings support the stimulatory potential of CaLITR3 proteins as activators of fish granulocytes and pave the way for a more in-depth examination of the immunoregulatory functions of CaLITRs in goldfish myeloid cells.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - Samuel Amoah
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
2
|
Lange MD, Churchman EM, Wise AL, Bruce TJ. A recombinant 9E1 monoclonal antibody binds membrane and soluble channel catfish immunoglobulin M. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100086. [PMID: 36895760 PMCID: PMC9988478 DOI: 10.1016/j.fsirep.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
The development and validation of the recombinant 9E1 monoclonal antibody against channel catfish IgM is described. The variable heavy and light chain domains of the 9E1 hybridoma were cloned into murine IgG1 and IgK expression vectors. These expression plasmids were co-transfected into 293F cells and mature IgG was purified from culture supernatant. It is demonstrated that the recombinant 9E1 monoclonal antibody binds to soluble IgM in ELISA and ELISPOT assays and to membrane-bound IgM by immunofluorescence with different B-cell types. The recombinant 9E1 monoclonal antibody will be a valuable tool in the continued examination of the channel catfish adaptive immune system.
Collapse
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Emily M Churchman
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Allison L Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Wang J, Gurupalli HV, Stafford JL. Teleost leukocyte immune-type receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104768. [PMID: 37414235 DOI: 10.1016/j.dci.2023.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Leukocyte immune-type receptors (LITRs) are a large family of teleost immunoregulatory receptor-types belonging to the immunoglobulin superfamily. These immune genes are phylogenetically and syntenically related to Fc receptor-like protein genes (fcrls) present in other vertebrates, including amphibians, birds, mice, and man. In vitro-based functional analyses of LITRs, using transfection approaches, have shown that LITRs have diverse immunoregulatory potentials including the activation and inhibition of several innate immune effector responses such as cell-mediated killing responses, degranulation, cytokine secretion, and phagocytosis. The purpose of this mini review is to provide an overview of fish LITR-mediated immunoregulatory potentials obtained from various teleost model systems, including channel catfish, zebrafish, and goldfish. We will also describe preliminary characterization of a new goldish LITR-specific polyclonal antibody (pAb) and discuss the significance of this tool for further investigation of the functions of fish LITRs.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | | | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
4
|
Crider J, Wilson M, Felch KL, Dupre RA, Quiniou SMA, Bengtén E. A subset of leukocyte immune-type receptors (LITRs) regulates phagocytosis in channel catfish (Ictalurus punctatus) leukocytes. Mol Immunol 2023; 154:33-44. [PMID: 36586386 DOI: 10.1016/j.molimm.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
Channel catfish, Ictalurus punctatus, leukocyte immune-type receptors (LITRs) constitute a large family of paired, immunoregulatory receptors unique to teleosts. A role for LITRs in phagocytosis has been proposed based on studies in mammalian cell lines; however, LITR-mediated phagocytosis has not been examined in the catfish model. In this study, we use two anti-LITR monoclonal antibodies, CC41 and 125.2, to contrast the effects of crosslinking subsets of inhibitory and activating LITRs. Briefly, LITRs expressed by catfish γδ T cells, αβ T cells, and macrophage cell lines were crosslinked using mAb-conjugated fluorescent microbeads, and bead uptake was evaluated by flow cytometry and confirmed by confocal microscopy. A clear difference in the uptake of 125.2- and CC41-conjugated beads was observed. Crosslinking LITRs with mAb 125.2 resulted in efficient bead internalization, while mAb CC41 crosslinking of inhibitory LITRs resulted predominantly in a capturing phenotype. Pretreating catfish macrophages with mAb CC41 resulted in a marked decrease in LITR-mediated phagocytosis of 125.2-conjugated beads. Overall, these findings provide insight into fish immunobiology and validate LITRs as regulators of phagocytosis in catfish macrophages and γδ T cells.
Collapse
Affiliation(s)
- Jonathan Crider
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Melanie Wilson
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Kristianna L Felch
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | - Rebecca A Dupre
- Oak Ridge Institute for Science and Education, US Department of Energy, 1299 Bethel Valley Rd, Oak Ridge, TN 37831-0117, USA; Food Processing and Sensory Quality Unit, USDA-ARS, 1100 Allen Toussaint Blvd, New Orleans, LA 70124, USA.
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, USDA-ARS-WARU, P.O. BOX 38, Stoneville, MS 38776, USA.
| | - Eva Bengtén
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|