1
|
Guarnieri A, Venditti N, Cutuli MA, Brancazio N, Salvatore G, Magnifico I, Pietrangelo L, Falcone M, Vergalito F, Nicolosi D, Scarsella F, Davinelli S, Scapagnini G, Petronio Petronio G, Di Marco R. Human breast milk isolated lactic acid bacteria: antimicrobial and immunomodulatory activity on the Galleria mellonella burn wound model. Front Cell Infect Microbiol 2024; 14:1428525. [PMID: 39310784 PMCID: PMC11412949 DOI: 10.3389/fcimb.2024.1428525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Managing burn injuries is a challenge in healthcare. Due to the alarming increase in antibiotic resistance, new prophylactic and therapeutic strategies are being sought. This study aimed to evaluate the potential of live Lactic Acid Bacteria for managing burn infections, using Galleria mellonella larvae as an alternative preclinical animal model and comparing the outcomes with a common antibiotic. Methods The antimicrobial activity of LAB isolated from human breast milk was assessed in vitro against Pseudomonas aeruginosa ATCC 27853. Additionally, the immunomodulatory effects of LAB were evaluated in vivo using the G. mellonella burn wound infection model. Results and discussion In vitro results demonstrated the antimicrobial activity of Lactic Acid Bacteria against P. aeruginosa. In vivo results show that their prophylactic treatment improves, statistically significant, larval survival and modulates the expression of immunity-related genes, Gallerimycin and Relish/NF-κB, strain-dependently. These findings lay the foundation and suggest a promising alternative for burn wound prevention and management, reducing the risk of antibiotic resistance, enhancing immune modulation, and validating the potential G. mellonella as a skin burn wound model.
Collapse
Affiliation(s)
- Antonio Guarnieri
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Noemi Venditti
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
- Unità Operativa (UO) Laboratorio Analisi, Responsible Research Hospital, Campobasso, Italy
| | - Marco Alfio Cutuli
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Natasha Brancazio
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giovanna Salvatore
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Irene Magnifico
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Laura Pietrangelo
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Marilina Falcone
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Franca Vergalito
- Università degli Studi del Molise Department of Agricultural, Environmental and Food Sciences, Campobasso, Italy
| | - Daria Nicolosi
- Università degli Studi di Catania Department of Drug and Health Sciences, Catania, Italy
| | - Franco Scarsella
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
- ASReM-Azienda Sanitaria Regionale del Molise, Campobasso, Italy
| | - Sergio Davinelli
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giovanni Scapagnini
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Giulio Petronio Petronio
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| | - Roberto Di Marco
- Università degli Studi del Molise Department of Medicina e Scienze della Salute “V. Tiberio”, Campobasso, Italy
| |
Collapse
|
2
|
Liu XL, Zhang Q, Wang X, Liu YP, Ze LJ, Zhang HN, Lu M. Relish involved in immunity and larval survival in the willow leaf beetle Plagiodera versicolora. PEST MANAGEMENT SCIENCE 2024; 80:3808-3814. [PMID: 38507262 DOI: 10.1002/ps.8084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Insects mainly rely on innate immunity against pathogen infection. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. However, the mechanisms behind the immunodeficiency pathway (IMD) remain poorly understood. RESULTS In this study, we obtained a Relish gene from transcriptome analysis. Tissue and instar expression profiles were subsequently obtained using quantitative real-time polymerase chain reaction analysis. The results showed that Relish has high expression levels in eggs, larvae and adults, and especially in fat bodies. Transcripts of the tested antimicrobial peptides (AMPs), defensin1, defensin2 and attacin2 were downregulated by dsRelish. Knockdown of Relish led to greater mortality in larvae after Staphylococcus aureus infection. In addition, we performed bacterial 16S ribosomal RNA-based high-throughput sequencing. The results showed that the relative abundance of some gut bacteria was significantly altered after dsRelish ingestion. CONCLUSION This study provides a greater understanding of the IMD signaling pathway, facilitating functional studies of Relish in P. versicolora. Moreover, a genetic pest management technique might be developed using Relish as a lethal gene to control the pest P. versicolora. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Long Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yi-Peng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Long-Ji Ze
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Hai-Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Wang X, Zafar J, Yang X, De Mandal S, Hong Y, Jin F, Xu X. Gut bacterium Burkholderia cepacia (BsNLG8) and immune gene Defensin A contribute to the resistance against Nicotine-induced stress in Nilaparvata lugens (Stål). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116371. [PMID: 38663196 DOI: 10.1016/j.ecoenv.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/18/2024] [Accepted: 04/20/2024] [Indexed: 05/30/2024]
Abstract
Nicotine, a naturally occurring alkaloid found in tobacco, is a potent neurotoxin extensively used to control Nilaparvata lugens (Stål), a destructive insect pest of rice crops. The insect gut harbors a wide array of resident microorganisms that profoundly influence several biological processes, including host immunity. Maintaining an optimal gut microbiota and immune homeostasis requires a complex network of reciprocal regulatory interactions. However, the underlying molecular mechanisms driving these symbiotic exchanges, particularly between specific gut microbe and immunity, remain largely unknown in insects. Our previous investigations identified and isolated a nicotine-degrading Burkholderia cepacia strain (BsNLG8) with antifungal properties. Building on those findings, we found that nicotine intake significantly increased the abundance of a symbiotic bacteria BsNLG8, induced a stronger bacteriostatic effect in hemolymph, and enhanced the nicotine tolerance of N. lugens. Additionally, nicotine-induced antimicrobial peptides (AMPs) exhibited significant antibacterial effects against Staphylococcus aureus. We adopted RNA-seq to explore the underlying immunological mechanisms in nicotine-stressed N. lugens. Bioinformatic analyses identified numerous differentially expressed immune genes, including recognition/immune activation (GRPs and Toll) and AMPs (i.e., Defensin, Lugensin, lysozyme). Temporal expression profiling (12, 24, and 48 hours) of immune genes revealed pattern recognition proteins and immune effectors as primary responders to nicotine-induced stress. Defensin A, a broad-spectrum immunomodulatory cationic peptide, exhibited significantly high expression. RNA interference-mediated silencing of Defensin A reduced the survival, enhanced nicotine sensitivity of N. lugens to nicotine, and decreased the abundance of BsNLG8. The reintroduction of BsNLG8 improved the expression of immune genes, aiding nicotine resistance of N. lugens. Our findings indicate a potential reciprocal immunomodulatory interaction between Defensin A and BsNLG8 under nicotine stress. Moreover, this study offers novel and valuable insights for future research into enhancing nicotine-based pest management programs and developing alternative biocontrol methods involving the implication of insect symbionts.
Collapse
Affiliation(s)
- Xuemei Wang
- National Key Laboratory of Green Pesticide, "Belt and Road" Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, "Belt and Road" Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaotong Yang
- National Key Laboratory of Green Pesticide, "Belt and Road" Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Surajit De Mandal
- National Key Laboratory of Green Pesticide, "Belt and Road" Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Yingying Hong
- National Key Laboratory of Green Pesticide, "Belt and Road" Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, "Belt and Road" Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, "Belt and Road" Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Galambos N, Vincent-Monegat C, Vallier A, Parisot N, Heddi A, Zaidman-Rémy A. Cereal weevils' antimicrobial peptides: at the crosstalk between development, endosymbiosis and immune response. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230062. [PMID: 38497254 PMCID: PMC10945404 DOI: 10.1098/rstb.2023.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 03/19/2024] Open
Abstract
Interactions between animals and microbes are ubiquitous in nature and strongly impact animal physiology. These interactions are shaped by the host immune system, which responds to infections and contributes to tailor the associations with beneficial microorganisms. In many insects, beneficial symbiotic associations not only include gut commensals, but also intracellular bacteria, or endosymbionts. Endosymbionts are housed within specialized host cells, the bacteriocytes, and are transmitted vertically across host generations. Host-endosymbiont co-evolution shapes the endosymbiont genome and host immune system, which not only fights against microbial intruders, but also ensures the preservation of endosymbionts and the control of their load and location. The cereal weevil Sitophilus spp. is a remarkable model in which to study the evolutionary adaptation of the immune system to endosymbiosis owing to its binary association with a unique, relatively recently acquired nutritional endosymbiont, Sodalis pierantonius. This Gram-negative bacterium has not experienced the genome size shrinkage observed in long-term endosymbioses and has retained immunogenicity. We focus here on the sixteen antimicrobial peptides (AMPs) identified in the Sitophilus oryzae genome and their expression patterns in different tissues, along host development or upon immune challenges, to address their potential functions in the defensive response and endosymbiosis homeostasis along the insect life cycle. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- N. Galambos
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | | | - A. Vallier
- INRAE, INSA Lyon, BF2I, UMR203, 69621 Villeurbanne, France
| | - N. Parisot
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Heddi
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
| | - A. Zaidman-Rémy
- INSA Lyon, INRAE, BF2I, UMR203, 69621 Villeurbanne, France
- Institut universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
5
|
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int J Mol Sci 2024; 25:3835. [PMID: 38612644 PMCID: PMC11011964 DOI: 10.3390/ijms25073835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030810, China
| | - Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
6
|
Rajabloo A, Karimi J, Mehrabadi M. Differential induction of NF-κB pathways by non-pathogenic and pathogenic bacteria in Helicoverpa armigera is critical for an efficient immune response and survival. J Invertebr Pathol 2024; 203:108049. [PMID: 38159795 DOI: 10.1016/j.jip.2023.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Following pathogen infection in a host, extensive changes occur in the host's gene expression pattern to suppress infection and increase the chance of host survival. Likewise, many pathogens have evolved to evade/suppress host immunity and increase their survival within the host. In this study, we assessed the NF-κB (Imd and Toll) essential gene expression response of Helicoverpa armigera to an entomopathogenic Serratia marcescens and non-pathogenic Escherichia coli. Bacterial cells of S. marcescens or E. coli were injected into the haemocoel of fifth-instar larvae of H. armigera, whereas distilled water was injected into control insects. Our results showed that the expression levels of the Imd and Toll pathway genes (i.e., Relish, imd, spätzle and dif) and the antimicrobial peptides (i.e., gloverin, transferin, gallerimycin, and galiomicin) were differentially expressed following the bacterial injections while control larvae showed no differences. The E. coli injection induced higher and longer-lasted gene expression than the S. marcescens injected larvae, in which the gene expressions were diminished from 24 h post injection. Transcript Knockdown of Relish increased the replication rates of S. marcescens and E. coli, and lowered the infected larvae survival rates. These results showed that H. armigera NF-κB immunity pathways (particularly Imd pathway) play a vital role in immunity against bacterial infections, and S. marcescens might modulate these pathways to survive and replicate in the host.
Collapse
Affiliation(s)
- Akram Rajabloo
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahed University, Tehran, Iran
| | - Jaber Karimi
- Department of Plant Protection, Faculty of Agriculture, Shahed University, Tehran, Iran.
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Wang H, Lu Z, Keyhani NO, Deng J, Zhao X, Huang S, Luo Z, Jin K, Zhang Y. Insect fungal pathogens secrete a cell wall-associated glucanase that acts to help avoid recognition by the host immune system. PLoS Pathog 2023; 19:e1011578. [PMID: 37556475 PMCID: PMC10441804 DOI: 10.1371/journal.ppat.1011578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Fungal insect pathogens have evolved diverse mechanisms to evade host immune recognition and defense responses. However, identification of fungal factors involved in host immune evasion during cuticular penetration and subsequent hemocoel colonization remains limited. Here, we report that the entomopathogenic fungus Beauveria bassiana expresses an endo-β-1,3-glucanase (BbEng1) that functions in helping cells evade insect immune recognition/ responses. BbEng1 was specifically expressed during infection, in response to host cuticle and hemolymph, and in the presence of osmotic or oxidative stress. BbEng1 was localized to the fungal cell surface/ cell wall, where it acts to remodel the cell wall pathogen associated molecular patterns (PAMPs) that can trigger host defenses, thus facilitating fungal cell evasion of host immune defenses. BbEng1 was secreted where it could bind to fungal cells. Cell wall β-1,3-glucan levels were unchanged in ΔBbEng1 cells derived from in vitro growth media, but was elevated in hyphal bodies, whereas glucan levels were reduced in most cell types derived from the BbEng1 overexpressing strain (BbEng1OE). The BbEng1OE strain proliferated more rapidly in the host hemocoel and displayed higher virulence as compared to the wild type parent. Overexpression of their respective Eng1 homologs or of BbEng1 in the insect fungal pathogens, Metarhizium robertsii and M. acridum also resulted in increased virulence. Our data support a mechanism by which BbEng1 helps the fungal pathogen to evade host immune surveillance by decreasing cell wall glucan PAMPs, promoting successful fungal mycosis.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Shuaishuai Huang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
8
|
Chu X, Yang M, Yu L, Xie H, Liu J, Wu S, Zhang F, Hu X. Double-strand RNAs targeting MaltRelish and MaltSpz reveals potential targets for pest management of Monochamus alternatus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105495. [PMID: 37532354 DOI: 10.1016/j.pestbp.2023.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Overcoming the innate immunity of insects is a key process to improve the efficiency of biological control. Antimicrobial peptides (AMPs) are important effectors in insect innate immunity, usually mediating resistance to pathogenic microorganisms through Toll and IMD signaling pathways. This study investigated the effect of key genes on upstream immune recognition receptor (GNBP3) and downstream effectors (AMPs) by RNAi technology. The transcriptome KEGG enrichment analysis and differential gene annotation results showed that the immune response genes MaltSpz and MaltRelish are important regulators of Toll and IMD signaling pathways, respectively. Both dsSpz and dsRelish could affect AMP gene expression and increase the expression of the immune recognition receptor MaltGNBP3. Moreover, they significantly reduce the survival rate of Monochamus alternatus and promote hyphal growth after Beauveria bassiana infection. This helps to improve the biological control effect of B. bassiana, control the population of vector insects and cut off the transmission route of pine wood nematode. The combined MaltSpz and MaltRelish knockdown increased the infection rate of M. alternatus larvae from 20.69% to 83.93%, achieving the best efficiency in synergistic B. bassiana infection. Our results showed important roles of MaltRelish- and MaltSpz-mediated regulation of AMP genes function in insect entomopathogenic fungi tolerance and induced significant mortality in larvae. Based on this study, MaltSpz and MaltRelish could represent candidate gene targets for the biological control of M. alternatus by RNAi.
Collapse
Affiliation(s)
- Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongyun Xie
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinyan Liu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
10
|
Vomáčková Kykalová B, Sassù F, Volf P, Telleria EL. RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection. Front Physiol 2023; 14:1182141. [PMID: 37265840 PMCID: PMC10230645 DOI: 10.3389/fphys.2023.1182141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Production of different antimicrobial peptides (AMPs) is one of the insect's prominent defense strategies, regulated mainly by Toll and immune deficiency (IMD) humoral pathways. Here we focused mainly on two AMPs of Phlebotomus papatasi, vector of Leishmania major parasites, their association with the relish transcription factor and the effective participation on Leishmania infection. Methods and results: We further characterized the role of previously described gut-specific P. papatasi defensin (PpDef1) and identified the second defensin (PpDef2) expressed in various sand fly tissues. Using the RNAi-mediated gene silencing, we report that the silencing of PpDef1 gene or simultaneous silencing of both defensin genes (PpDef1 and PpDef2) resulted in increased parasite levels in the sand fly (detectable by PCR) and higher sand fly mortality. In addition, we knocked down relish, the sole transcription factor of the IMD pathway, to evaluate the association of the IMD pathway with AMPs expression in P. papatasi. We demonstrated that the relish gene knockdown reduced the expression of PpDef2 and attacin, another AMP abundantly expressed in the sand fly body. Conclusions: Altogether, our experiments show the importance of defensins in the sand fly response toward L. major and the role of the IMD pathway in regulating AMPs in P. papatasi.
Collapse
|
11
|
Unraveling the Role of Antimicrobial Peptides in Insects. Int J Mol Sci 2023; 24:ijms24065753. [PMID: 36982826 PMCID: PMC10059942 DOI: 10.3390/ijms24065753] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens.
Collapse
|
12
|
Shen P, Ding K, Wang L, Tian J, Huang X, Zhang M, Dang X. In vitro and in vivo antimicrobial activity of antimicrobial peptide Jelleine-I against foodborne pathogen Listeria monocytogenes. Int J Food Microbiol 2023; 387:110050. [PMID: 36508953 DOI: 10.1016/j.ijfoodmicro.2022.110050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
As a human foodborne pathogen, Listeria monocytogenes can cause severe human listeriosis and develop resistance to antibiotics. Antimicrobial peptides (AMPs) are produced from all kingdoms of life and regarded as promising alternatives to conventional antibiotics. Jelleine-I is an AMP identified from honeybees royal jelly. In this study, we explored the activity and action mechanism of Jelleine-I against L. monocytogenes. We found its minimum inhibitory concentration to be 12.5 μg/mL. Membrane permeability analysis revealed that Jelleine-I increased L. monocytogenes cell membrane permeability, causing calcium leakage. Scanning, transmission electron microscopy and fluorescence microscopy revealed that Jelleine-I destroyed membrane integrity, disrupted intracellular structures and interacted with the bacterial DNA. DNA binding analysis demonstrated that Jelleine-I bound to bacterial genomic DNA. Results of reverse transcription-quantitative PCR revealed that Jelleine-I affected bacterial DNA replication gene expression levels. Moreover, Jelleine-I induced cellular reactive oxygen species (ROS) production from fluorescence intensity analysis, and inhibited bacterial biofilm formation. Results of immunomodulation in Galleria mellonella revealed that Jelleine-I increased host hemocyte counts, upregulated host AMP gene (Gloverin and Cecropin D) expression, and inhibited proinfammatory cytokine (tumor necrosis factor α and interleukin 6) production induced by bacterial infection. It efficiently killed bacteria and increased the survival rate of infected insects to 70 %. Furthermore, Jelleine-I increased the G1 to S phase transition in mammalian cells from cells cycle analysis, and cytotoxicity assay results indicated that it promoted cell proliferation without hemolysis or cytotoxicity. Collectively, Jelleine-I possesses antimicrobial, immunomodulatory and cell proliferative activities, and is a promising candidate for preventing L. monocytogenes emergence and dissemination.
Collapse
Affiliation(s)
- Panpan Shen
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kang Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Lifang Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jinhuan Tian
- Department of Material Science and Engineering, College of Chemistry and Material, Jinan University, Guangzhou 510632, China
| | - Xiuhong Huang
- Department of Material Science and Engineering, College of Chemistry and Material, Jinan University, Guangzhou 510632, China
| | - Mingyu Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Attarianfar M, Mikani A, Mehrabadi M. The endocrine disruptor, fenoxycarb modulates gut immunity and gut bacteria titer in the cotton bollworm, Helicoverpa armigera. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109507. [PMID: 36368508 DOI: 10.1016/j.cbpc.2022.109507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The endocrine system modulates several physiological functions such as development and metamorphosis in insects. The normal growth and development of insects is interfered with insect growth regulators (IGRs), which act as mimics of insect hormones like juvenile hormone (JH) and ecdysone hormone. The effects of JH and its analogs on systemic immunity have been identified. However the effect of these compounds on local gut immunity is largely unknown. In this study, the effects of JH analog fenoxycarb on the local gut immunity of Helicoverpa armigera, gut bacteria population, and their role in the pathogenicity of Bacillus thuringiensis (Bt) were analyzed. The results showed that feeding fenoxycarb causes a decrease in the transcription level of IMD (Relish and PGPR-LC), ROS (DUOX and SOD) related genes and antimicrobial peptides (AMPs), followed by an overpopulation of gut bacteria. The fenoxycarb-treated larvae showed higher susceptibility to Bt compared to the control larvae. Overall, these findings collectively suggest that JH analog affects local gut immunity and gut bacteria titer.
Collapse
Affiliation(s)
- Marzieh Attarianfar
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran. https://twitter.com/@attarianfar
| | - Azam Mikani
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran.
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran.
| |
Collapse
|
14
|
Grizanova EV, Krytsyna TI, Kalmykova GV, Sokolova E, Alikina T, Kabilov M, Coates CJ, Dubovskiy IM. Virulent and necrotrophic strategies of Bacillus thuringiensis in susceptible and resistant insects, Galleria mellonella. Microb Pathog 2023; 175:105958. [PMID: 36572197 DOI: 10.1016/j.micpath.2022.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Bacillus thuringiensis (Bt) is one of the most common entomopathogenic bacteria used as a biopesticide, and source of endotoxin genes for generating insect-resistant transgenic plants. The mechanisms underpinning an insect's susceptibility or resistance to B. thuringiensis are diverse. The bacterial lifecycle does not end with the death of a host, they continue to exploit the cadaver to reproduce and sporulate. Herein, we studied the progression of B. thuringiensis subsp. galleriae infection in two populations of wax moth larvae (Galleria mellonella) to gain further insight into the "arms race" between B. thuringiensis virulence and insect defences. Two doses of B. thuringiensis subsp. galleriae (spore and crystalline toxin mixtures) were administered orally to compare the responses of susceptible (S) and resistant (R) populations at ∼30% mortality each. To investigate B. thuringiensis-insect antibiosis, we used a combination of in vivo infection trials, bacterial microbiome analysis, and RNAi targeting the antibacterial peptide gloverin. Within 48 h post-inoculation, B. thuringiensis-resistant insects purged the midgut of bacteria, i.e., colony forming unit numbers fell below detectable levels. Second, B. thuringiensis rapidly modulated gene expression to initiate sporulation (linked to quorum sensing) when exposed to resistant insects in contrast to susceptible G. mellonella. We reinforce earlier findings that elevated levels of antimicrobial peptides, specifically gloverin, are found in the midgut of resistant insects, which is an evolutionary strategy to combat B. thuringiensis infection via its main portal of entry. A sub-population of highly virulent B. thuringiensis can survive the enhanced immune defences of resistant G. mellonella by disrupting the midgut microbiome and switching rapidly to a necrotrophic strategy, prior to sporulation in the cadaver.
Collapse
Affiliation(s)
- Ekaterina V Grizanova
- Department of Plant Protection, Novosibirsk State Agrarian University, 630039, Novosibirsk, Russia.
| | - Tatiana I Krytsyna
- Department of Plant Protection, Novosibirsk State Agrarian University, 630039, Novosibirsk, Russia.
| | - Galina V Kalmykova
- Faculty of Physical Engineering, Novosibirsk State Technical University, 630039, Novosibirsk, Russia.
| | - Elina Sokolova
- Department of Plant Protection, Novosibirsk State Agrarian University, 630039, Novosibirsk, Russia.
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630039, Novosibirsk, Russia.
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630039, Novosibirsk, Russia.
| | - Christopher J Coates
- Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway, H91 TK33, Ireland; Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK.
| | - Ivan M Dubovskiy
- Department of Plant Protection, Novosibirsk State Agrarian University, 630039, Novosibirsk, Russia.
| |
Collapse
|
15
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
16
|
Deng J, Lu Z, Wang H, Li N, Song G, Zhu Q, Sun J, Zhang Y. A secretory phospholipase A2 of a fungal pathogen contributes to lipid droplet homeostasis, assimilation of insect-derived lipids, and repression of host immune responses. INSECT SCIENCE 2022; 29:1685-1702. [PMID: 35276754 DOI: 10.1111/1744-7917.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Secretory phospholipase A2s (sPLA2s) are found in a wide range of organisms from bacteria to higher plants and animals and are involved in varied and cellular processes. However, roles of these enzymes in microbial pathogens remain unclear. Here, an sPLA2 (BbPLA2) was characterized in the filamentous insect pathogenic fungus, Beauveria bassiana. BbPLA2 was exclusively expressed in insect hemolymph-derived cells (hyphal bodies), and its expression was induced by insect-derived nutrients and lipids, and nutrient starvation. High levels of secretion of BbPLA2 were observed as well as its distribution in hyphal body lipid drops (LDs). Overexpression of BbPLA2 increased the ability of B. bassiana to utilize insect-derived nutrients and lipids, and promoted LD accumulation, indicating functions for BbPLA2 in mediating LD homeostasis and assimilation of insect-derived lipids. Strains overexpressing BbPLA2 showed moderately increased virulence, including more efficient penetration of the insect cuticle and evasion of host immune responses as compared to the wild type strain. In addition, B. bassiana-activated host immune genes were downregulated in the BbPLA2 overexpression strain, but upregulated by infections with a ΔBbPLA2 strain. These data demonstrate that BbPLA2 contributes to LD homeostasis, assimilation of insect-derived lipids, and repression of host immune responses.
Collapse
Affiliation(s)
- Juan Deng
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhuoyue Lu
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huifang Wang
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ning Li
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guimei Song
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiankuan Zhu
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jingxin Sun
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yongjun Zhang
- Biotechnology Research Center, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Bidari F, Fathipour Y, Asgari S, Mehrabadi M. Targeting the microRNA pathway core genes, Dicer 1 and Argonaute 1, negatively affects the survival and fecundity of Bemisia tabaci. PEST MANAGEMENT SCIENCE 2022; 78:4234-4239. [PMID: 35708473 DOI: 10.1002/ps.7041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small regulatory non-coding RNAs that are involved in a variety of biological processes such as immunity, cell signaling and development by regulating gene expression. The whitefly Bemisia tabaci is a polyphagous vector that transmits many plant viruses causing economic damage to crops worldwide. In this study, we characterized and analyzed the expression of the miRNA core genes Argonaute-1 (Ago1) and Dicer-1 (Dcr1) in B. tabaci and explored the effect of their silencing on the insect's fitness. RESULTS Our results showed that Ago1 and Dcr1 are differentially expressed in different tissues and developmental stages of B. tabaci. To determine the function of the miRNA pathway in B. tabaci, we silenced Ago1 and Dcr1 using specific double-stranded RNAs to the genes. RNA interference (RNAi) of Ago1 and Dcr1 decreased the expression level of the core genes and reduced the abundance of Let-7 and miR-184 miRNAs. Silencing of the miRNA pathway core gene also negatively affected the biology of B. tabaci by reducing fertility, fecundity and survival of this insect pest. CONCLUSIONS Together, our results showed that silencing the miRNA pathway core genes reduced the miRNA levels followed by reduced fecundity and survival of B. tabaci, which highlighted the importance of the miRNA pathway in this insect. The miRNA core genes are attractive targets for developing an RNAi-based strategy for targeting this notorious insect pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Farzad Bidari
- Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | | | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
18
|
Host-Specific larval lepidopteran mortality to pathogenic Serratia mediated by poor diet. J Invertebr Pathol 2022; 194:107818. [PMID: 35973510 DOI: 10.1016/j.jip.2022.107818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
Insect guts often harbor an abundance of bacteria. Many of these members are commensal, but some may emerge as opportunistic pathogens when the host is under stress. In this study, we evaluated how dietary nutritional concentration mediates a shift from commensal to pathogenic, and if host species influences those interactions. We used the lepidopterans (Noctuidae) fall armyworm (Spodoptera frugiperda), beet armyworm (Spodoptera exigua), and corn earworm (Helicoverpa zea) as hosts and a Serratia strain initially isolated from healthy fall armyworm. Diet concentration was altered by bulk reduction in nutritional content with dilution using cellulose. Our experiments revealed that low nutrient diet increased mortality from Serratia for beet armyworm and corn earworm. However, for fall armyworm, little mortality was observed in any of the diet combinations. Dietary nutrition and oral inoculation with Serratia did not change the expression of two antimicrobial peptides in fall and beet armyworm, suggesting that other mechanisms that mediate mortality were involved. Our results have implications for how pathogens may persist as commensals in the digestive tract of insects. These findings also suggest that diet plays a very important role in the switch from commensal to pathogen. Finally, our data indicate that the host response to changing conditions is critical in determining if a pathogen may overtake its host and that these three lepidopteran species have different responses to opportunistic enteric pathogens.
Collapse
|
19
|
Yin Y, Cao K, Zhao X, Cao C, Dong X, Liang J, Shi W. Bt Cry1Ab/2Ab toxins disrupt the structure of the gut bacterial community of Locusta migratoria through host immune responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113602. [PMID: 35526455 DOI: 10.1016/j.ecoenv.2022.113602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The gut microbiota of insects plays a vital role in digestion, nutrient acquisition, metabolism of dietary toxins, pathogen immunity and maintenance of gut homeostasis. Bacillus thuringinensis (Bt) poisons target insects through its toxins that are activated in the insect gut. The effects of Bt toxins on gut microbiota of insects and their underlying mechanisms are not well understood. In this study, we found that Cry1Ab/2Ab toxins significantly changed the gut bacterial community's structure and reduced the total load of gut bacteria in the Locusta migratoria. In addition, Cry toxins significantly increased the level of reactive oxygen species (ROS) in the gut of locusts. Our results also showed that Cry1Ab/2Ab toxins induced the host gut's immune response by up-regulating of key genes in the Immune deficiency (IMD) and Toll pathway. RNA interference showed that knocking down Relish could narrow the difference in the load, diversity, and composition in gut bacteria caused by Cry toxins. Our findings suggest that Bt potentially influences the gut bacterial community of L. migratoria through host immune response.
Collapse
Affiliation(s)
- Yue Yin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China.
| | - Kaili Cao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China.
| | - Xinxin Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China.
| | - Chuan Cao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China.
| | - Xuehui Dong
- Department of Agriculture Science, China Agricultural University, Beijing 100094, China.
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China.
| | - Wangpeng Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing 100094, China.
| |
Collapse
|
20
|
Ke L, Yan WY, Zhang LZ, Zeng ZJ, Evans JD, Huang Q. Honey Bee Habitat Sharing Enhances Gene Flow of the Parasite Nosema ceranae. MICROBIAL ECOLOGY 2022; 83:1105-1111. [PMID: 34342699 DOI: 10.1007/s00248-021-01827-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Host-parasite co-evolution is a process of reciprocal, adaptive genetic change. In natural conditions, parasites can shift to other host species, given both host and parasite genotypes allow this. Even though host-parasite co-evolution has been extensively studied both theoretically and empirically, few studies have focused on parasite gene flow between native and novel hosts. Nosema ceranae is a native parasite of the Asian honey bee Apis cerana, which infects epithelial cells of mid-guts. This parasite successfully switched to the European honey bee Apis mellifera, where high virulence has been reported. In this study, we used the parasite N. ceranae and both honey bee species as model organisms to study the impacts of two-host habitat sharing on parasite diversity and virulence. SNVs (Single Nucleotide Variants) were identified from parasites isolated from native and novel hosts from sympatric populations, as well as novel hosts from a parapatric population. Parasites isolated from native hosts showed the highest levels of polymorphism. By comparing the parasites isolated from novel hosts between sympatric and parapatric populations, habitat sharing with the native host significantly enhanced parasite diversity, suggesting there is continuing gene flow of parasites between the two host species in sympatric populations.
Collapse
Affiliation(s)
- Li Ke
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China
| | - Wei Yu Yan
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China
| | - Li Zhen Zhang
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China
| | - Zhi Jiang Zeng
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, BARC-East Building 306, Beltsville, MD, 20705, USA
| | - Qiang Huang
- Jiangxi Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Zhimin Ave. 1101, Nanchang, 330045, China.
| |
Collapse
|
21
|
Bacillus thuringiensis Spores and Cry3A Toxins Act Synergistically to Expedite Colorado Potato Beetle Mortality. Toxins (Basel) 2021; 13:toxins13110746. [PMID: 34822531 PMCID: PMC8624055 DOI: 10.3390/toxins13110746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
The insect integument (exoskeleton) is an effective physiochemical barrier that limits disease-causing agents to a few portals of entry, including the gastrointestinal and reproductive tracts. The bacterial biopesticide Bacillus thuringiensis (Bt) enters the insect host via the mouth and must thwart gut-based defences to make its way into the body cavity (haemocoel) and establish infection. We sought to uncover the main antibacterial defences of the midgut and the pathophysiological features of Bt in a notable insect pest, the Colorado potato beetle Leptinotarsa decemlineata (CPB). Exposing the beetles to both Bt spores and their Cry3A toxins (crystalline δ-endotoxins) via oral inoculation led to higher mortality levels when compared to either spores or Cry3A toxins alone. Within 12 h post-exposure, Cry3A toxins caused a 1.5-fold increase in the levels of reactive oxygen species (ROS) and malondialdehyde (lipid peroxidation) within the midgut - key indicators of tissue damage. When Cry3A toxins are combined with spores, gross redox imbalance and 'oxidation stress' is apparent in beetle larvae. The insect detoxification system is activated when Bt spores and Cry3A toxins are administered alone or in combination to mitigate toxicosis, in addition to elevated mRNA levels of candidate defence genes (pattern-recognition receptor, stress-regulation, serine proteases, and prosaposin-like protein). The presence of bacterial spores and/or Cry3A toxins coincides with subtle changes in microbial community composition of the midgut, such as decreased Pseudomonas abundance at 48 h post inoculation. Both Bt spores and Cry3A toxins have negative impacts on larval health, and when combined, likely cause metabolic derangement, due to multiple tissue targets being compromised.
Collapse
|
22
|
Chen K, Chen J, Tang T, Jiang H, Han Z, Wang L, Alradi MF, Lu S, Wei X, Liu X, Wei Y, Feng C. Characterization and functional analysis of a Relish gene from the Asian corn borer, Ostrinia furnacalis (Guenée). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21841. [PMID: 34468040 PMCID: PMC8453101 DOI: 10.1002/arch.21841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 05/21/2023]
Abstract
Pathogen-induced host immune responses reduce the efficacy of pathogens used to control pests. However, compared to the well-deciphered immunity system of Drosophila melanogaster, the immunity system of agricultural pests is largely unconfirmed through functional analysis. Beginning to unveil mechanisms of transcription regulation of immune genes in the Asian corn borer, Ostrinia furnacalis, we cloned the complementary DNA (cDNA) of a transcription factor Relish by rapid amplification of cDNA ends. The 3164 bp cDNA, designated Of-Relish, encodes a 956-residue protein. Bioinformatic analysis showed that Of-Relish had a Rel homology domain, a predicted cleavage site between Q409 and L410 , six ankyrin repeats, and a death domain. The response of Of-Relish expression to the Gram-negative bacteria Pseudomonas aeruginosa was sooner and stronger than to the Gram-positive Micrococcus luteus. The antimicrobial peptide genes Attacin and Gloverin had similar expression patterns in response to the infections. Knockdown of Of-Relish led to a decrease in Attacin and Gloverin messenger RNA levels, suggesting that Attacin and Gloverin were regulated by Of-Relish. Together, the results suggested that Of-Relish is a key component of the IMD pathway in O. furnacalis, involved in defense against P. aeruginosa through activation of Attacin and Gloverin.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiaqian Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tai Tang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mohamed F. Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youheng Wei
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Corresponding author Congjing Feng,
| |
Collapse
|
23
|
Sanchez-Hernandez JC. A toxicological perspective of plastic biodegradation by insect larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109117. [PMID: 34186180 DOI: 10.1016/j.cbpc.2021.109117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022]
Abstract
Larvae of some insect species (Coleoptera and Lepidoptera) can consume and biodegrade synthetic polymers, including polyethylene, polystyrene, polyvinyl chloride, and polypropylene. Multiple chemical (polymer mass loss and shift of the molecular weight, alterations in chemical functionality, formation of biodegraded intermediates, CO2 production), physical (surface hydrophobicity, thermal analysis), and biological approaches (antibiotic treatment, gut dysbiosis, isolation of plastic microbial degraders) have provided evidence for polymer biodegradation in the larva digestive tract. However, the extent and rate of biodegradation largely depend on the physicochemical structure of the polymer as well as the presence of additives. Additionally, toxicology associated with plastic biodegradation has not been investigated. This knowledge gap is critical to understand the gut symbiont-host interaction in the biodegradation process, its viability in the long term, the effects of plastic additives and their metabolites, and the phenotypic traits linked to a plastic-rich diet might be transferred in successive generations. Likewise, plastic-eating larvae represent a unique case study for elucidating the mechanisms of toxic action by micro- and nanoplastics because of the high concentration of plastics these organisms may be intentionally exposed to. This perspective review graphically summarizes the current knowledge on plastic biodegradation by insect larvae and describes the physiological processes (digestive and immune systems) that may be disrupted by micro- and nanoplastics. It also provides an outlook to advance current knowledge on the toxicity assessment of plastic-rich diets and the environmental risks of plastic-containing by-products (e.g., insect manure used as fertilizer).
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, 45071 Toledo, Spain.
| |
Collapse
|
24
|
Lin Q, Fu Q, Su G, Chen D, Yu B, Luo Y, Zheng P, Mao X, Huang Z, Yu J, Luo J, Yan H, He J. Protective effect of Bombyx mori gloverin on intestinal epithelial cells exposure to enterotoxigenic E. coli. Braz J Microbiol 2021; 52:1235-1245. [PMID: 34155582 PMCID: PMC8324673 DOI: 10.1007/s42770-021-00532-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Bombyx mori gloverin A2 (BMGlvA2) is an induced antimicrobial insect protein isolated from Bombyx mori. This study was conducted to explore the effect and potential mechanisms of BMGlvA2 on inflammatory responses and cellular functions in intestinal epithelial cells (IPEC-J2) exposure to enterotoxigenic E. coli (ETEC). IPEC-J2 cells pretreated with or without BMGlvA2 (12.5 μg/mL) were challenged by ETEC K88 (1×106 CFU/well) or culture medium. We show that BMGlvA2 pretreatment increased the cell viability and improved the distribution and abundance of tight junction protein ZO-1 in IPEC-J2 cells exposure to ETEC (P < 0.05). Interestingly, BMGlvA2 not only decreased the expression levels of inflammatory cytokines such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), but also decreased the expression level of Caspase3 and the apoptosis rate in the ETEC-challenged cells (P < 0.05). Importantly, BMGlvA2 decreased the protein abundances of two critical inflammation-associated signaling proteins, phosphorylated nuclear factor-kappa-B inhibitor alpha (p-IκBα) and phosphorylated nuclear factor-kappa B (p-NF-κB), in the ETEC-challenged cells. These results indicate that BMGlvA2 attenuates ETEC-induced inflammation in the IPEC-J2 cells by regulating the NF-κB signaling pathway, resulting in decreased secretion of inflammatory cytokine and reduced cell apoptosis.
Collapse
Affiliation(s)
- Qian Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Qingqing Fu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Guoqi Su
- Chongqing Academy of Animal Sciences, Chongqing, 402460, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu, 611130, People's Republic of China.
- Key Laboratory of Animal Disease-Resistant Nutrition, Sichuan Province, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
25
|
Moreira-Pinto CE, Coelho RR, Leite AGB, Silveira DA, de Souza DA, Lopes RB, Macedo LLP, Silva MCM, Ribeiro TP, Morgante CV, Antonino JD, Grossi-de-Sa MF. Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. PEST MANAGEMENT SCIENCE 2021; 77:4054-4063. [PMID: 33896113 DOI: 10.1002/ps.6430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The hemolymph and insect gut together have an essential role in the immune defense against microorganisms, including the production of antimicrobial peptides (AMP). AMPs are mainly induced by two specific signaling pathways, Toll and immune deficiency (IMD). Here, we characterize the expression profile of four genes from both pathways and describe the importance of AgraRelish in the immune defense of Anthonomus grandis against the entomopathogenic fungus Metarhizium anisopliae by RNA interference (RNAi). RESULTS To characterize the pathway that is activated early during the A. grandis-M. anisopliae interaction, we assessed the expression profiles of AgraMyD88 and AgraDorsal (Toll pathway), AgraIMD and AgraRelish (IMD pathway), and several AMP genes. Interestingly, we found that IMD pathway genes are upregulated early, and Toll pathway genes are upregulated just 3 days after inoculation (DAI). Furthermore, nine AMPs were upregulated 24 h after fungus inoculation, including attacins, cecropins, coleoptericins, and defensins. AgraRelish knockdown resulted in a reduction in median lethal time (LT50 ) for M. anisopliae-treated insects of around 2 days compared to control treatments. In addition, AgraRelish remained knocked down at 3 DAI. Finally, we identified that AgraRelish knockdown increased fungal loads at 2 DAI compared to control treatments, possibly indicating a faster infection. CONCLUSIONS Our data indicate the influence of the IMD pathway on the antifungal response in A. grandis. Combining biocontrol and RNAi could significantly improve cotton boll weevil management. Hence, AgraRelish is a potential target for the development of biotechnological tools aimed at improving the efficacy of M. anisopliae against A. grandis.
Collapse
Affiliation(s)
- Clidia E Moreira-Pinto
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Roberta R Coelho
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Ana G B Leite
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Daniela A Silveira
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | | | - Rogerio B Lopes
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Leonardo L P Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
| | - Thuanne P Ribeiro
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Embrapa Semi-Arid, Petrolina, Brazil
| | - José D Antonino
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Departamento de Agronomia-Entomologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasilia, Brazil
- Catholic University of Brasilia, Brasília, Brazil
| |
Collapse
|
26
|
Wu K, Tang Y, Zhang Q, Zhuo Z, Sheng X, Huang J, Ye J, Li X, Liu Z, Chen H. Aging-related upregulation of the homeobox gene caudal represses intestinal stem cell differentiation in Drosophila. PLoS Genet 2021; 17:e1009649. [PMID: 34228720 PMCID: PMC8284806 DOI: 10.1371/journal.pgen.1009649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/16/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
The differentiation efficiency of adult stem cells undergoes a significant decline in aged animals, which is closely related to the decline in organ function and age-associated diseases. However, the underlying mechanisms that ultimately lead to this observed decline of the differentiation efficiency of stem cells remain largely unclear. This study investigated Drosophila midguts and identified an obvious upregulation of caudal (cad), which encodes a homeobox transcription factor. This factor is traditionally known as a central regulator of embryonic anterior-posterior body axis patterning. This study reports that depletion of cad in intestinal stem/progenitor cells promotes quiescent intestinal stem cells (ISCs) to become activate and produce enterocytes in the midgut under normal gut homeostasis conditions. However, overexpression of cad results in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, this study suggests that cad prevents intestinal stem/progenitor cell differentiation by modulating the Janus kinase/signal transducers and activators of the transcription pathway and Sox21a-GATAe signaling cascade. Importantly, the reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. This study identified a function of the homeobox gene cad in the modulation of adult stem cell differentiation and suggested a potential gene target for the treatment of age-related diseases induced by age-related stem cell dysfunction. Adult stem cells undergo an aging-related decline of differentiation efficiency in aged animals. However, the underlying mechanisms that ultimately lead to this observed decline of differentiation efficiency in stem cells still remain largely unclear. By using the Drosophila midgut as a model system, this study identified the homeobox family transcription factor gene caudal (cad), the expression of which is significantly upregulated in intestinal stem cells (ISCs) and progenitor cells of aged Drosophila. Depletion of cad promoted quiescent ISCs to become activate and produce enterocytes (ECs) in midguts under normal gut homeostasis conditions; However, overexpression of cad resulted in the failure of ISC differentiation and intestinal epithelial regeneration after injury. Moreover, cad prevents ISC-to-EC differentiation by inhibiting JAK/STAT signaling, and the expressions of Sox21a and GATAe. Reduction of cad expression in intestinal stem/progenitor cells restrained age-associated gut hyperplasia in Drosophila. These findings enable a detailed understanding of the roles of homeobox genes in the modulation of adult stem cell aging in humans. This will be beneficial for the treatment of age-associated diseases that are caused by a functional decline of stem cells.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhangpeng Zhuo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Sheng
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingping Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie’er Ye
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaorong Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiming Liu
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory for Aging and Stem Cell Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
27
|
Xia J, Ge C, Yao H. Antimicrobial Peptides from Black Soldier Fly ( Hermetia illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. Animals (Basel) 2021; 11:1937. [PMID: 34209689 PMCID: PMC8300228 DOI: 10.3390/ani11071937] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Functional antimicrobial peptides (AMPs) are an important class of effector molecules of innate host immune defense against pathogen invasion. Inability of microorganisms to develop resistance against the majority of AMPs has made them alternatives to antibiotics, contributing to the development of a new generation of antimicrobials. Due to extensive biodiversity, insects are one of the most abundant sources of novel AMPs. Notably, black soldier fly insect (BSF; Hermetia illucens (Diptera: Stratiomyidae)) feeds on decaying substrates and displays a supernormal capacity to survive under adverse conditions in the presence of abundant microorganisms, therefore, BSF is one of the most promising sources for identification of AMPs. However, discovery, functional investigation, and drug development to replace antibiotics with AMPs from Hermetia illucens remain in a preliminary stage. In this review, we provide general information on currently verified AMPs of Hermetia illucens, describe their potential medical value, discuss the mechanism of their synthesis and interactions, and consider the development of bacterial resistance to AMPs in comparison with antibiotics, aiming to provide a candidate for substitution of antibiotics in livestock farming or, to some extent, for blocking the horizontal transfer of resistance genes in the environment, which is beneficial to human and animal welfare.
Collapse
Affiliation(s)
- Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
28
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Yi C, Lv X, Chen D, Sun B, Guo L, Wang S, Ru Y, Wang H, Zeng Q. Transcriptome analysis of the Macrobrachium nipponense hepatopancreas provides insights into immunoregulation under Aeromonas veronii infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111503. [PMID: 33120268 DOI: 10.1016/j.ecoenv.2020.111503] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The oriental river prawn Macrobrachium nipponense is a commercially important freshwater shrimp that is widely farmed in China. Aeromonas veronii is a conditional pathogen of farmed shrimp, which has caused huge economic losses to the industry. Therefore, there is urgency to study the host-pathogen interactions between M. nipponense and A. veronii to screen individuals with antimicrobial resistance. In this study, we examined the hepatopancreas of moribund M. nipponense infected with A. veronii and healthy individuals at both the histopathological and transcriptomic levels. We showed that A. veronii infection resulted in tubular necrosis of the M. nipponense hepatopancreas. Such changes likely affect assimilation, storage, and excretion by the hepatopancreas, which could ultimately affect the survival and growth of infected individuals. Among the 61,345 unigenes obtained through RNA sequencing and de novo transcriptome assembly, 232 were differentially expressed between the two groups. KEGG and GO analyses revealed that these differentially expressed genes were implicated in pathways, including PPAR, PI3K/AKT, and AMPK signaling. The results of this study will contribute to an analysis of the immune response of M. nipponense to A. veronii infection at the transcriptomic level. Furthermore, the RNA-seq data generated here provide an important genomic resource for research on M. nipponense in the absence of a reference genome.
Collapse
Affiliation(s)
- Cao Yi
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiaoting Lv
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Duanduan Chen
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Bing Sun
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Leifeng Guo
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shouquan Wang
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuanyuan Ru
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Hui Wang
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Qifan Zeng
- Ministry of Education, Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao 266003, Shandong, China.
| |
Collapse
|
30
|
Lu Z, Deng J, Wang H, Zhao X, Luo Z, Yu C, Zhang Y. Multifunctional role of a fungal pathogen-secreted laccase 2 in evasion of insect immune defense. Environ Microbiol 2021; 23:1256-1274. [PMID: 33393158 DOI: 10.1111/1462-2920.15378] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 11/29/2022]
Abstract
Laccases are widely present in bacteria, fungi, plants and invertebrates and involved in a variety of physiological functions. Here, we report that Beauveria bassiana, an economic important entomopathogenic fungus, secretes a laccase 2 (BbLac2) during infection that detoxifies insect immune response-generated reactive oxygen species (ROS) and interferes with host immune phenoloxidase (PO) activation. BbLac2 is expressed in fungal cells during proliferation in the insect haemocoel and can be found to distribute on the surface of haemolymph-derived in vivo fungal hyphal bodies or be secreted. Targeted gene-knockout of BbLac2 increased fungal sensitivity to oxidative stress, decreased virulence to insect, and increased host PO activity. Strains overexpressing BbLac2 showed increased virulence, with reduced host PO activity and lowered ROS levels in infected insects. In vitro assays revealed that BbLac2 could eliminate ROS and oxidize PO substrates (phenols), verifying the enzymatic functioning of the protein in detoxification of cytotoxic ROS and interference with the PO cascade. Moreover, BbLac2 acted as a cell surface protein that masked pathogen associated molecular patterns (PAMPs), enabling the pathogen to evade immune recognition. Our data suggest a multifunctional role for fungal pathogen-secreted laccase 2 in evasion of insect immune defenses.
Collapse
Affiliation(s)
- Zhuoyue Lu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Juan Deng
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Huifang Wang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Xin Zhao
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Zhibing Luo
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Chenxi Yu
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| | - Yongjun Zhang
- Biotechnology Research Center, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
31
|
The Tripartite Interaction of Host Immunity- Bacillus thuringiensis Infection-Gut Microbiota. Toxins (Basel) 2020; 12:toxins12080514. [PMID: 32806491 PMCID: PMC7472377 DOI: 10.3390/toxins12080514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Bacillus thuringiensis (Bt) is an important cosmopolitan bacterial entomopathogen, which produces various protein toxins that have been expressed in transgenic crops. The evolved molecular interaction between the insect immune system and gut microbiota is changed during the Bt infection process. The host immune response, such as the expression of induced antimicrobial peptides (AMPs), the melanization response, and the production of reactive oxygen species (ROS), varies with different doses of Bt infection. Moreover, B. thuringiensis infection changes the abundance and structural composition of the intestinal bacteria community. The activated immune response, together with dysbiosis of the gut microbiota, also has an important effect on Bt pathogenicity and insect resistance to Bt. In this review, we attempt to clarify this tripartite interaction of host immunity, Bt infection, and gut microbiota, especially the important role of key immune regulators and symbiotic bacteria in the Bt killing activity. Increasing the effectiveness of biocontrol agents by interfering with insect resistance and controlling symbiotic bacteria can be important steps for the successful application of microbial biopesticides.
Collapse
|