1
|
Perdiguero P, Morel E, Díaz-Rosales P, Tafalla C. Individual B cells transcribe multiple rearranged immunoglobulin light chains in teleost fish. iScience 2021; 24:102615. [PMID: 34142062 PMCID: PMC8188548 DOI: 10.1016/j.isci.2021.102615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 11/01/2022] Open
Abstract
B cells express a unique antibody protein which comprises two pairs of immunoglobulin (Ig) heavy (H) and light (L) chains. In addition to an invariable constant (C) region, IgH and IgL chains encompass a variable (V) region mediating antigen binding. This unique region stems from Ig V(D)J gene recombination, which generates diversity by assembling these gene segments into VHDJH and VLJL genes. To ensure that one B cell only expresses one antibody, VHDJH rearrangement occurs only in one IgH locus (allelic exclusion), whereas VLJL rearrangement only in either the κ or λ locus (isotype exclusion). However, teleosts express multiple IgLs encoded by distinct CL genes. Using single-cell transcriptomics, we have demonstrated the transcription of distinct rearranged VLJLCL genes in single rainbow trout B cells. Our results highlight the laxity of isotype exclusion in teleosts and strongly suggest that fish B cells can produce antibodies of different specificities.
Collapse
Affiliation(s)
- Pedro Perdiguero
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| | - Esther Morel
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| | | | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain
| |
Collapse
|
2
|
Magadan S, Mondot S, Palti Y, Gao G, Lefranc MP, Boudinot P. Genomic analysis of a second rainbow trout line (Arlee) leads to an extended description of the IGH VDJ gene repertoire. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103998. [PMID: 33450314 DOI: 10.1016/j.dci.2021.103998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing technologies brought a renewed interest for immune repertoires. Fish Ab and B cell repertoires are no exception, and their comprehensive analysis can both provide new insights into poorly understood immune mechanisms, and identify markers of protection after vaccination. However, the lack of genomic description and standardized nomenclature of IG genes hampers accurate annotation of Ig mRNA deep sequencing data. Complete genome sequences of Atlantic salmon and rainbow trout (Swanson line) recently allowed us to establish a comprehensive and coherent annotation of Salmonid IGH genes following IMGT standards. Here we analyzed the IGHV, D, and J genes from the newly released genome of a second rainbow trout line (Arlee). We confirmed the validity of salmonid IGHV subgroups, and extended the description of the rainbow trout IGH gene repertoire with novel sequences, while keeping nomenclature continuity. This work provides an important resource for annotation of high-throughput Ab repertoire sequencing data.
Collapse
Affiliation(s)
- Susana Magadan
- Centro de Investigaciones Biomédicas, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310, Vigo, Spain.
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV, 25430, USA
| | - Guangtu Gao
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV, 25430, USA
| | - Marie Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR9002 CNRS, Université de Montpellier, Montpellier, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Karami AM, Ødegård J, Marana MH, Zuo S, Jaafar R, Mathiessen H, von Gersdorff Jørgensen L, Kania PW, Dalsgaard I, Nielsen T, Buchmann K. A Major QTL for Resistance to Vibrio anguillarum in Rainbow Trout. Front Genet 2020; 11:607558. [PMID: 33447254 PMCID: PMC7802751 DOI: 10.3389/fgene.2020.607558] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 02/03/2023] Open
Abstract
Genetic selection of disease resistant fish is a major strategy to improve health, welfare and sustainability in aquaculture. Mapping of single nucleotide polymorphisms (SNP) in the fish genome may be a fruitful tool to define relevant quantitative trait loci (QTL) and we here show its use for characterization of Vibrio anguillarum resistant rainbow trout (Oncorhynchus mykiss). Fingerlings were exposed to the pathogen V. anguillarum serotype O1 in a solution of 1.5 × 107 cfu/ml and observed for 14 days. Disease signs appeared 3 days post exposure (dpe) whereafter mortality progressed exponentially until 6 dpe reaching a total mortality of 55% within 11 days. DNA was sampled from all fish – including survivors – and analyzed on a 57 k Affymetrix SNP platform whereby it was shown that disease resistance was associated with a major QTL on chromosome 21 (Omy 21). Gene expression analyses showed that diseased fish activated genes associated with innate and adaptive immune responses. The possible genes associated with resistance are discussed.
Collapse
Affiliation(s)
- Asma M Karami
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Moonika H Marana
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shaozhi Zuo
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rzgar Jaafar
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heidi Mathiessen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per W Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inger Dalsgaard
- Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|