1
|
Peng B, Lin J, Wan H, Zou P, Zhang Z, Wang Y. Identification of toll-like receptor family and the immune function of new Sptlr-6 gene of Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109609. [PMID: 38705549 DOI: 10.1016/j.fsi.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/25/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
As a crucial member of pattern-recognition receptors (PRRs), the Tolls/Toll-like receptors (TLRs) gene family has been proven to be involved in innate immunity in crustaceans. In this study, nine members of TLR gene family were identified from the mud crab (Scylla paramamosain) transcriptome, and the structure and phylogeny of different SpTLRs were analyzed. It was found that different SpTLRs possessed three conserved structures in the TIR domain. Meanwhile, the expression patterns of different Sptlr genes in examined tissues detected by qRT-PCR had wide differences. Compared with other Sptlr genes, Sptlr-6 gene was significantly highly expressed in the hepatopancreas and less expressed in other tissues. Therefore, the function of Sptlr-6 was further investigated. The expression of the Sptlr-6 gene was up-regulated by Poly I: C, PGN stimulation and Vibrio parahaemolyticus infection. In addition, the silencing of Sptlr-6 in hepatopancreas mediated by RNAi technology resulted in the significant decrease of several conserved genes involved in innate immunity in mud crab after V. parahaemolyticus infection, including relish, myd88, dorsal, anti-lipopolysaccharide factor (ALF), anti-lipopolysaccharide factor 2 (ALF-2) and glycine-rich antimicrobial peptide (glyamp). This study provided new knowledge for the role of the Sptlr-6 gene in defense against V. parahaemolyticus infection in S. paramamosain.
Collapse
Affiliation(s)
- Bohao Peng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jiaming Lin
- Xiamen Ocean Vocational College, Xiamen, 361100, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
2
|
Lu AX, Lin Y, Li J, Liu JX, Yan CH, Zhang L. Effects of food-borne docosahexaenoic acid supplementation on bone lead mobilisation, mitochondrial function and serum metabolomics in pre-pregnancy lead-exposed lactating rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122613. [PMID: 37757928 DOI: 10.1016/j.envpol.2023.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Large bone lead (Pb) resulting from high environmental exposure during childhood is an important source of endogenous Pb during pregnancy and lactation. Docosahexaenoic acid (DHA) attenuates Pb toxicity, however, the effect of DHA on bone Pb mobilisation during lactation has not been investigated. We aimed to study the effects of DHA supplementation during pregnancy and lactation on bone Pb mobilisation during lactation and its potential mechanisms. Weaning female rats were randomly divided into control (0.05% sodium acetate) and Pb-exposed (0.05% Pb acetate) groups, after a 4-week exposure by ad libitum drinking and a subsequent 4-week washout period, all female rats were mated with healthy males until pregnancy. Then exposed rats were randomly divided into Pb and Pb + DHA groups, and the latter was given a 0.14% DHA diet, while the remaining groups were given normal feed until the end of lactation. Pb and calcium levels, bone microarchitecture, bone turnover markers, mitochondrial function and serum metabolomics were analyzed. The results showed that higher blood and bone Pb levels were observed in the Pb group compared to the control, and there was a significant negative correlation between blood and bone Pb. Also, Pb increased trabecular bone loss along with slightly elevated serum C-telopeptide of type I collagen (CTX-I) levels. However, DHA reduced CTX-I levels and improved trabecular bone microarchitecture. Metabolomics showed that Pb affected mitochondrial function, which was further demonstrated in bone tissue by significant reductions in ATP levels, Na+-K+-ATPase, Ca2+-Mg2+-ATPase and CAT activities, and elevated levels of MDA, IL-1β and IL-18. However, these alterations were partially mitigated by DHA. In conclusion, DHA supplementation during pregnancy and lactation improved bone Pb mobilisation and mitochondrial dysfunction in lactating rats induced by pre-pregnancy Pb exposure, providing potential means of mitigating bone Pb mobilisation levels during lactation, but the mechanism still needs further study.
Collapse
Affiliation(s)
- An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
3
|
Chen L, Zhang H, Shi H, Li Z, Xue C. Application of multi-omics combined with bioinformatics techniques to assess salinity stress response and tolerance mechanisms of Pacific oyster (Crassostrea gigas) during depuration. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108779. [PMID: 37120087 DOI: 10.1016/j.fsi.2023.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Depuration is a vital stage to ensure the safety of oyster consumption, and salinity had a great impact on the environmental adaptability of oysters, but the underlying molecular mechanism was poorly understood during depuration stage. Here, Crassostrea gigas was depurated for 72 h at different salinity (26, 29, 32, 35, 38 g/L, corresponding to ±20%, ±10% salinity fluctuation away from oyster's production area) and then analyzed by using transcriptome, proteome, and metabolome combined with bioinformatics techniques. The transcriptome showed that the salinity stress led to 3185 differentially expressed genes and mainly enriched in amino acid metabolism, carbohydrate metabolism, lipid metabolism, etc. A total of 464 differentially expressed proteins were screened by the proteome, and the number of up-regulated expression proteins was less than the down-regulated, indicating that the salinity stress would affect the regulation of metabolism and immunity in oysters. 248 metabolites significantly changed in response to depuration salinity stress in oysters, including phosphate organic acids and their derivatives, lipids, etc. The results of integrated omics analysis indicated that the depuration salinity stress induced abnormal metabolism of the citrate cycle (TCA cycle), lipid metabolism, glycolysis, nucleotide metabolism, ribosome, ATP-binding cassette (ABC) transport pathway, etc. By contrast with Pro-depuration, more radical responses were observed in the S38 group. Based on the results, we suggested that the 10% salinity fluctuation was suitable for oyster depuration and the combination of multi-omics analysis could provide a new perspective for the analysis of the mechanism changes.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province, 266237, PR China
| | - Haohao Shi
- College of Food Science and Technology, Hainan University, Hainan, 570228, PR China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
4
|
Tribamrung N, Bunnoy A, Chuchird N, Srisapoome P. The first description of the blue swimming crab (Portunus pelagicus) transcriptome and immunological defense mechanism in response to white spot syndrome virus (WSSV). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108626. [PMID: 36841515 DOI: 10.1016/j.fsi.2023.108626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In the global shellfish farming industry, white spot syndrome virus (WSSV) is a major cause of mortality and a significant factor in economic losses. However, information on molecular immune responses to WSSV in blue swimming crabs (Portunus pelagicus) has never been reported. First, viral loads were measured in the gills, hepatopancreas, intestines, subcuticular epithelium and hemocytes of blue swimming crabs (50 ± 10 g) (n = 4) after WSSV induction at 0, 24, 48 and 96 h post injection (hpi). A significant increase in WSSV particles was observed in gills at 48 and 96 hpi, as supported by histopathology. To further investigate the acute immune response to WSSV, total RNA from the same gill tissues at 0, 24, and 96 hpi was used to construct 16 high-quality RNA-seq cDNA libraries. In summary, 162,740 unigenes were discovered in these transcriptomic libraries analyzed with the GO, KO, KOG, NR, NT, PFAM and SwissProt databases. Intensive sequence analysis against control crabs using three major categories of gene oncology (GO) of DEGs, biological processes (BPs), molecular functions (MFs), and cellular components (CCs), indicated that induction of WSSV in blue swimming crabs strongly affected the immune responses of the target animals significantly during the early stages of infection from 24 to 96 hpi. Furthermore, KEGG identified approximately twenty biological pathways of gene expression that were both downregulated and upregulated. Interestingly, at 24 and 96 hpi, several immune-related genes involved in virus defense in the blue swimming crab, particularly crustin 2, chitinase, anti-lipopolysaccharide, proteinase inhibitor, and lysozyme, were highly expressed during the WSSV early infection stages. At the same time, viral mRNA transcripts, including WSV289, WSV343, WSV306, deoxyuridine 5' triphosphate nucleohydrolase, RING finger containing E3 ubiquitin-protein ligase WSV403 and WSV404, were recorded in the top twenty upregulated genes. Moreover, some immune-responsive genes related to growth development, such as chitinase, tubulin alpha and beta chains, trypsin, and the cathepsin family, were also differentially expressed during these periods. Expression validation of 20 upregulated and 11 downregulated immune-related genes using qRT‒PCR showed similar patterns with transcriptome information. Overall, the data showed that during WSSV infection, a number of immune-, metabolism-, and growth-related pathways were activated, and several of the pathways involved differed depending on the stage of virus invasion. These findings could effectively help us better understand the impact of WSSV on the physiology of blue swimming crabs and serve as a valuable reference for future research on the immune system and disease control in this target species.
Collapse
Affiliation(s)
- Nattanicha Tribamrung
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Aquatic Animal Health Management Excellence in of Center, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Aquatic Animal Health Management Excellence in of Center, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Niti Chuchird
- Aquaculture Business Research Center, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Aquatic Animal Health Management Excellence in of Center, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| |
Collapse
|
5
|
Zhan M, Wen L, Zhu M, Gong J, Xi C, Wen H, Xu G, Shen H. Integrative Analysis of Transcriptome and Metabolome Reveals Molecular Responses in Eriocheir sinensis with Hepatopancreatic Necrosis Disease. BIOLOGY 2022; 11:1267. [PMID: 36138745 PMCID: PMC9495758 DOI: 10.3390/biology11091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Hepatopancreatic necrosis disease (HPND) is a highly lethal disease that first emerged in 2015 in Jiangsu Province, China. So far, most researchers believe that this disease is caused by abiotic factors. However, its true pathogenic mechanism remains unknown. In this study, the effects of HPND on the metabolism and other biological indicators of the Chinese mitten crab (Eriocheir sinensis) were evaluated by integrating transcriptomics and metabolomics. Our findings demonstrate that the innate immunity, antioxidant activity, detoxification ability, and nervous system of the diseased crabs were affected. Additionally, metabolic pathways such as lipid metabolism, nucleotide metabolism, and protein metabolism were dysregulated, and energy production was slightly increased. Moreover, the IL-17 signaling pathway was activated and high levels of autophagy and apoptosis occurred in diseased crabs, which may be related to hepatopancreas damage. The abnormal mitochondrial function and possible anaerobic metabolism observed in our study suggested that functional hypoxia may be involved in HPND progression. Furthermore, the activities of carboxylesterase and acetylcholinesterase were significantly inhibited, indicating that the diseased crabs were likely stressed by pesticides such as pyrethroids. Collectively, our findings provide new insights into the molecular mechanisms altered in diseased crabs, as well as the etiology and pathogenic mechanisms of HPND.
Collapse
Affiliation(s)
- Ming Zhan
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lujie Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mengru Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jie Gong
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changjun Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
6
|
Cheng C, Ma H, Liu G, Deng Y, Jiang J, Feng J, Guo Z. Biochemical, metabolic, and immune responses of mud crab (Scylla paramamosain) after mud crab reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 127:437-445. [PMID: 35779811 DOI: 10.1016/j.fsi.2022.06.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.
Collapse
Affiliation(s)
- ChangHong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - HongLing Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - GuangXin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - YiQing Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - JianJun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - ZhiXun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| |
Collapse
|
7
|
Cui Y, Wan H, Zhang X. miRNA in food simultaneously controls animal viral disease and human tumorigenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:995-1006. [PMID: 33614246 PMCID: PMC7868940 DOI: 10.1016/j.omtn.2021.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
During virus infection in animals, the virus completes its life cycle in a host cell. A virus infection results in the metabolic deregulation of its host and leads to metabolic disorders, ultimately paving the way for cancer progression. Because metabolic disorders in virus infections occurring in animal are similar to metabolic disorders in human tumorigenesis, animal antiviral microRNAs (miRNAs), which maintain the metabolic homeostasis of animal cells, in essence, may have anti-tumor activity in humans. However, that issue has not been investigated. In this study, shrimp miR-34, a potential antiviral miRNA of shrimp against white spot syndrome virus (WSSV) infection, was identified. Overexpression of shrimp miR-34 in shrimp fed bacteria expressing miR-34 suppressed WSSV infection by targeting the viral wsv330 and wsv359 genes. Furthermore, the expression of shrimp miR-34 in mice fed miR-34-overexpressing shrimp suppressed breast cancer progression by targeting human CCND1, CDK6, CCNE2, E2F3, FOSL1, and MET genes. Therefore, our study suggests that the miRNAs in food could be an effective strategy for synchronously controlling viral diseases of economic animals and cancers in humans.
Collapse
Affiliation(s)
- Yalei Cui
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Haitao Wan
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
8
|
Song Y, Hu T, Gao H, Zhai J, Gong J, Zhang Y, Tao L, Sun J, Li Z, Qu X. Altered metabolic profiles and biomarkers associated with astragaloside IV-mediated protection against cisplatin-induced acute kidney injury in rats: An HPLC-TOF/MS-based untargeted metabolomics study. Biochem Pharmacol 2020; 183:114299. [PMID: 33148504 DOI: 10.1016/j.bcp.2020.114299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP)-induced acute kidney injury (AKI) limits the therapeutic use of CDDP, which urgently needs to be addressed. Our previous study demonstrated that astragaloside IV (AS IV), an active compound of the traditional Chinese herb Astragalus membranaceus, alleviated CDDP-induced AKI. To explore the mechanism, we performed a metabolomics study to explore the altered metabolic pathways and screen for sensitive biomarkers. Twenty-four rats were randomly divided into three groups, which were treated with vehicle solutions (Control), intraperitoneally injected CDDP, and intraperitoneally injected CDDP plus oral AS IV, respectively. Metabolic profiles of serum, urine, and kidney samples were analyzed by high-performance liquid chromatography-time of flight mass spectrometry. There were 38 key metabolites in the urine samples, 20 in the serum samples, and 16 in the kidney samples that were significantly altered due to AS IV-mediated protection against CDDP-induced AKI relative to CDDP-only treatment. CDDP + AS IV co-treatment significantly altered two pathways in the blood (biosynthesis of unsaturated fatty acids and alanine, aspartate, and glutamate metabolism), five pathways in the urine (phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; arginine biosynthesis; arginine and proline metabolism; and histidine metabolism), and five pathways in the kidneys (glutathione metabolism; alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; arginine and proline metabolism; and D-glutamine and D-glutamate metabolism). The metabolic pathways were mainly associated with improvements in inflammatory responses, oxidative stress, and energy metabolism. Adrenic acid in serum and L-histidine and L-methionine in urine were identified as sensitive biomarkers. This study provides new insights to understand the mechanism of AS IV-mediated protection against CDDP-induced AKI and has identified three candidate biomarkers to evaluate preventative treatment and assess therapeutic effectiveness.
Collapse
Affiliation(s)
- Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Tingting Hu
- Department of Technical Center, Changchun Customs District, Changchun 130062, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jiawei Gong
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jingmeng Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhiyuan Li
- AB Sciex Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|