1
|
Lu JM, Shang F, Ding BY, Wang L, Li QC, Wang JJ, Dou W. Characterization of two Bursicon genes and their association with wing development in the brown citrus aphid, Aphis citricidus. INSECT SCIENCE 2024; 31:1684-1696. [PMID: 38339808 DOI: 10.1111/1744-7917.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
The tanning hormone, Bursicon, is a neuropeptide secreted by the insect nervous system that functions as a heterodimer composed of Burs-α and Burs-β subunits. It plays a critical role in the processes of cuticle tanning and wing expansion in insects. In this study, we successfully identified the AcBurs-α and AcBurs-β genes in Aphis citricidus. The open reading frames of AcBurs-α and AcBurs-β were 480 and 417 bp in length, respectively. Both AcBurs-α and AcBurs-β exhibited 11 conserved cysteine residues. AcBurs-α and AcBurs-β were expressed during all developmental stages of A. citricidus and showed high expression levels in the winged aphids. To investigate the potential role of AcBurs-α and AcBurs-β in wing development, we employed RNA interference (RNAi) techniques. With the efficient silencing of AcBurs-α (44.90%) and AcBurs-β (52.31%), malformed wings were induced in aphids. The proportions of malformed wings were 22.50%, 25.84%, and 38.34% in dsAcBurs-α-, dsAcBur-β-, and dsAcBurs-α + dsAcBur-β-treated groups, respectively. Moreover, feeding protein kinase A inhibitors (H-89) also increased the proportion of malformed wings to 30.00%. Feeding both double-stranded RNA and inhibitors (H-89) significantly downregulated the wing development-related genes nubbin, vestigial, notch and spalt major. Silence of vestigial through RNAi also led to malformed wings. Meanwhile, the exogenous application of 3 hormones that influence wing development did not affect the expression level of AcBursicon genes. These findings indicate that AcBursicon genes plays a crucial role in wing development in A. citricidus; therefore, it represents a potential molecular target for the control of this pest through RNAi-based approaches.
Collapse
Affiliation(s)
- Jin-Ming Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qing-Chun Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Liao LL, Li WZ, Jin L, Li GQ. Rnai-based functional analysis of bursicon genes related to cuticle pigmentation in a ladybird beetle. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104696. [PMID: 39173874 DOI: 10.1016/j.jinsphys.2024.104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
In arthropods, the binding of a bursicon (encoded by burs and pburs) heterodimer or homodimer to a leucine-rich repeat-containing G protein coupled receptor LGR2 (encoded by rk) can activate many physiological processes, especially cuticle pigmentation during insect ecdysis. In the current paper, we intended to ascertain whether bursicon signaling mediates body coloration in the 28-spotted larger potato ladybird, Henosepilachna vigintioctomaculata, and if so, by which way bursicon signal governs the pigmentation. The high expression of Hvburs, Hvpburs and Hvrk occurred in the young larvae, pupae and adults, especially in the head and ventral nerve cord. RNA interference (RNAi) aided knockdown of Hvburs, Hvpburs or Hvrk in the prepupae caused similar phenotypic defects. The pigmentation of the resultant adults was affected, with significantly reduced dark areas on the sternums. Moreover, the accumulated mRNA levels of two sclerotin biosynthesis genes, aspartate 1-decarboxylase gene Hvadc and N-β-alanyldopamine synthase gene Hvebony, were significantly increased in the Hvburs, Hvpburs or Hvrk RNAi beetles. Furthermore, depletion of either Hvadc or Hvebony could completely rescue the impaired coloration on the sternums of Hvpburs RNAi adult. Our results supported that bursicon heterodimer-mediated signal regulate cuticle pigmentation. The bursicon signaling may tune the ratio of melanins (dark/black, brown) to sclerotins (light yellow, colorless) exerting its regulative role in the pigmentation of H. vigintioctomaculata sternums.
Collapse
Affiliation(s)
- Lan-Lan Liao
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Ze Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Jiang S, Bao J, Chen Y, Liu Z, Liu R, Cheng Y, Zhang L, Jiang X, Kong H. Immunological regulation by Toll-1 and Spätzle-4 in larval density-dependent prophylaxis of the oriental armyworm, Mythimna separata. Int J Biol Macromol 2024; 264:130778. [PMID: 38467221 DOI: 10.1016/j.ijbiomac.2024.130778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
High population density has been shown to alter insect prophylactic immunity. Toll-Spätzle pathway performs a key function in insect innate immune response. To determine the role of Toll and Spätzle, two main components of Toll-Spätzle pathway, in the density-dependent prophylaxis of Mythimna separata. We identified full-length cDNA encoding the Toll-1 and Spätzle-4 genes in M. separata (designed MsToll-1 and Ms Spätzle-4). Both MsToll-1 and MsSpätzle-4 were expressed throughout all developmental stages. MsToll-1 expression was highly in fat body and brain and MsSpätzle-4 was highly expressed in brain and Malpighian tubule. With increased larval density, MsToll-1 expression was markedly up-regulated. MsSpätzle-4 expression was found to be raised in larvae that were fed in high density (5 and 10 larvae per jar). Co-immunoprecipitation assays demonstrated that MsToll-1 interacted with MsSpätzle-4. Immune-related genes transcriptions were considerably reduced in high-density larvae MsToll-1 (or MsSpätzle-4) was silenced by dsRNA injection. Meanwhile, a discernible reduction in the survival rate of the larvae exposed to Bacillus thuringiensis infection with silence of MsToll-1 (or MsSpätzle-4) was observed. This study implies that prophylactic immunity was influenced by crowded larvae via modulating the Toll-Spätzle pathway in M. separata and allow for a new understanding of into density-dependent prophylaxis in insects.
Collapse
Affiliation(s)
- Suwan Jiang
- College of Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, PR China
| | - Jianqiang Bao
- College of Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, PR China
| | - Yuxuan Chen
- College of Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, PR China
| | - Zhonglin Liu
- College of Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, PR China
| | - Rui Liu
- College of Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, PR China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, NO. 2 of West Yuanmingyuan Road, Beijing 100193, PR China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, NO. 2 of West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, NO. 2 of West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Hailong Kong
- College of Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou 225009, PR China.
| |
Collapse
|
4
|
Zhou ZX, Dou W, Wang M, Shang F, Wang JJ. Bursicon regulates wing expansion via PKA in the oriental fruit fly, Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2024; 80:388-396. [PMID: 37708392 DOI: 10.1002/ps.7768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Bursicon is a heterodimeric neuropeptide that is involved in many physiological activities such as cuticle tanning, wing expansion, reproduction and immunity in insects. In this study, the role of bursicon in the wing expansion was investigated in Bactrocera dorsalis, an important invasive insect pest in agriculture. RESULTS The cDNA sequences and deduced amino acids of bursicon genes (named BdBurs-α and BdBurs-β) were determined, and two proteins typically contained 11 cysteine residues in conserved positions that were highly conserved in other insect species. The spatiotemporal expressions of bursicon genes showed that higher expression occurred at the pupal, early adult stage and ovaries, and lower expression at the late larval stage and in wing tissue (8-day-old pupae). Dysfunction of bursicon genes by dsRNA microinjection into 5-day-old pupae reduced PKA (a downstream component of the bursicon pathway) activity and resulted in malformed adult wings. PKA inhibitor injection into 5-day-old pupae also resulted in similar phenotypes. Hematoxylin & eosin staining of the adult wing showed that RNAi and PKA inhibitor treatment reduced the thickness of the wing cuticle, which wing cuticle thickness were ≈50% thinner than in the control. Furthermore, the expression of hedgehog (Bdhh) (one of 10 tested genes related to wing development) was significantly upregulated after RNAi and PKA inhibitor application. CONCLUSION The results indicate that bursicon plays a crucial role in the wing expansion of B. dorsalis, suggesting bursicon genes have potential to be the targets for B. dorsalis control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Mo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Science, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Lyu B, Li J, Niemeyer B, Stanley D, Song Q. Identification and characterization of ecdysis-related neuropeptides in the lone star tick Amblyomma americanum. Front Endocrinol (Lausanne) 2023; 14:1256618. [PMID: 37693356 PMCID: PMC10490126 DOI: 10.3389/fendo.2023.1256618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The lone star tick, Amblyomma americanum, is an important ectoparasite known for transmitting diseases to humans and animals. Ecdysis-related neuropeptides (ERNs) control behaviors crucial for arthropods to shed exoskeletons. However, ERN identification and characterization in A. americanum remain incomplete. Methods We investigated ERNs in A. americanum, assessing their evolutionary relationships, protein properties, and functions. Phylogeny, sequence alignment, and domain structures of ERNs were analyzed. ERN functionality was explored using enrichment analysis, and developmental and tissue-specific ERN expression profiles were examined using qPCR and RNAi experiments. Results and discussion The study shows that ERN catalogs (i.e., eclosion hormone, corazonin, and bursicon) are found in most arachnids, and these ERNs in A. americanum have high evolutionary relatedness with other tick species. Protein modeling analysis indicates that ERNs primarily consist of secondary structures and protein stabilizing forces (i.e., hydrophobic clusters, hydrogen bond networks, and salt bridges). Gene functional analysis shows that ENRs are involved in many ecdysis-related functions, including ecdysis-triggering hormone activity, neuropeptide signaling pathway, and corazonin receptor binding. Bursicon proteins have functions in chitin binding and G protein-coupled receptor activity and strong interactions with leucine-rich repeat-containing G-protein coupled receptor 5. ERNs were expressed in higher levels in newly molted adults and synganglia. RNAi-mediated knockdown of burs α and burs β expression led to a significant decrease in the expression of an antimicrobial peptide, defensin, suggesting they might act in signaling or regulatory pathways that control the expression of immune-related genes. Arthropods are vulnerable immediately after molting because new cuticles are soft and susceptible to injury and pathogen infections. Bursicon homodimers act in prophylactic immunity during this vulnerable period by increasing the synthesis of transcripts encoding antimicrobial peptides to protect them from microbial invasion. Collectively, the expression pattern and characterization of ERNs in this study contribute to a deeper understanding of the physiological processes in A. americanum.
Collapse
Affiliation(s)
- Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Jingjing Li
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Brigid Niemeyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - David Stanley
- Biological Control of Insect Research Laboratory, United States Department of Agriculture-Agricultural Research Station (USDA/ARS), Columbia, MO, United States
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
6
|
Hasnain M, Saeed S, Naeem-Ullah U, Ullah S. Evaluation of chemosterility effect of different insect growth regulators on Bactrocera zonata population. Sci Prog 2023; 106:368504231155388. [PMID: 36803156 PMCID: PMC10450315 DOI: 10.1177/00368504231155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The indiscriminate application of synthetic pesticides on horticultural plants for the management of Bactrocera zonata has both economic and environmental implications due to the biomagnification of harmful residues in humans via the food chain. This necessitates the use of some eco-friendly control measures such as insect growth regulators (IGRs) as an alternative. A laboratory experiment was laid out to determine the potential chemosterilant effect of five IGRs including pyriproxyfen, novaluron, lufenuron, buprofezin, and flubendiamide at six different concentrations on B. zonata after treating adult diet. Using the oral bioassay, B. zonata were fed on IGRs impregnated diet (50-300 ppm/5 mL diet) which was replaced with the normal diet after 24 h of feeding. Ten pairs of B. zonata were placed in a separate plastic cage accommodating an ovipositor attractant guava for eggs collection and calculation. An analysis of the result revealed that fecundity and hatchability were higher at a low dose and vice versa. Lufenuron at 300 ppm/5 mL of diet significantly decreased the fecundity rate (31.1%) as compared to pyriproxyfen, novaluron, buprofezin and flubendiamide, which had 39.3%, 39.3%, 43.8%, and 47.5%, respectively. The lowest hatchability (19.9%) was noted in lufenuron treated diet followed by pyriproxyfen, novaluron, buprofezin, and flubendiamide, which had 22.1%, 25.0%, 30.9%, and 31.6%, respectively. Furthermore, in a population of crosses between the lufenuron treated male and female, a significant decrease in fecundity (45.5%) and hatchability (51.7%) was noted as compared to other IGRs. Overall, this study identified the chemosterilant potential of lufenuron on the population of B. zonata which can be integrated for its management strategy.
Collapse
Affiliation(s)
- Muhammad Hasnain
- Institute of Plan Protection, 443922MNS University of Agriculture, Multan, Punjab, Pakistan
| | - Shafqat Saeed
- Institute of Plan Protection, 443922MNS University of Agriculture, Multan, Punjab, Pakistan
| | - Unsar Naeem-Ullah
- Institute of Plan Protection, 443922MNS University of Agriculture, Multan, Punjab, Pakistan
| | - Sami Ullah
- Department of Horticulture, 443922MNS University of Agriculture, Multan, Punjab, Pakistan
| |
Collapse
|
7
|
Zhang CS, Sun LL, Xie JM, Cao CW. RNAi-based functional analysis of bursicon genes related to wing expansion in gypsy moths. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104398. [PMID: 35537524 DOI: 10.1016/j.jinsphys.2022.104398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Bursicon is a heterodimeric neuropeptide composed of Burs-α and Burs-β subunits that plays an important role in cuticle tanning and wing expansion in insects. In this study, full-length cDNAs of Burs-α (LdBurs-α) and Burs-β (LdBurs-β) genes were identified in gypsy moth (Lymantria dispar) and cloned. The 480 bp and 420 bp open reading frames (ORFs) encode 159 and 129 amino acid polypeptides, respectively. LdBurs-α and LdBurs-β have 11 conserved cysteine residues, and LdBurs-α and LdBurs-β genes were expressed during all developmental stages according to quantitative reverse transcription PCR (qRT-PCR), with highest expression in the egg stage. High expression levels were also detected in the haemolymph, cuticle and head. To explore the physiological functions of LdBurs-α and LdBurs-β, the genes were knocked down in larvae and pupae using RNA interference (RNAi), and expression levels of LdBurs-α and LdBurs-β were decreased by 42.26-80.09%. Wing defects were observed in L. dispar pupae following Ldbursion silencing, with a phenotypic percentage ranging from 10.17% to 15.00%. RNAi-mediated knockdown of Ldbursicon prevented the expansion of male and female L. dispar adult wings, with malformation rates ranging from 6.38% and 30.00% to 57.69% and 69.23%, but no cuticle tanning defects were observed in pupae or adults. The results indicate that bursicon plays a key role in wing expansion in L. dispar adults, making it a potentially novel molecular target for insecticide-based control of this pest species.
Collapse
Affiliation(s)
- Chen-Shu Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Li-Li Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Jia-Ming Xie
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuan-Wang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|