1
|
Lv M, Wang Y, Yu J, Kong Y, Zhou H, Zhang A, Wang X. Grass carp Il-2 promotes neutrophil extracellular traps formation via inducing ROS production and autophagy in vitro. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109261. [PMID: 38040137 DOI: 10.1016/j.fsi.2023.109261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Interleukin (IL)-2 has been reported to regulate neutrophil functions in humans, mice, pigs and chicken although it is a key regulator of T cells. Consistently, we found that grass carp (Ctenopharyngodon idellus) interleukin-2 (gcIl-2) is capable of modulating the antimicrobial activities of neutrophils via regulating granzyme B- and perforin-like gene expression in our previous study. In the present study, stimulation of gcIl-2 on neutrophil extracellular traps (NETs) formation in grass carp neutrophils was demonstrated by detecting free DNA release, histone H3 citrullination and morphological changes of the cells. Further investigation revealed that reactive oxygen species (ROS) production from NADPH oxidase but not mitochondria was involved in NETosis induced by gcIl-2. Aside from ROS, autophagy was disclosed to be indispensable for NETosis induced by gcIl-2. These converging lines of evidence suggested that fish Il-2 could induce NETs formation via NADPH oxidase-derived ROS- and autophagy-dependent pathways in fish species which is evolutionarily conserved with that in mammals. It is noteworthy that these two pathways did not interplay with each other in Il-2-stimulated NETosis. The mechanisms governing autophagy induced by Il-2 were also explored in the present study, showing that Il-2 modulated the action of high mobility group box 1 (HMGB1) protein to stimulate autophagy, leading to NETs formation in fish neutrophils. These results provided a new insight to the function of Il-2 in fish neutrophils, and a clue about the regulation of NETosis in the lower vertebrates.
Collapse
Affiliation(s)
- Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yawen Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jinzhi Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yiyun Kong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Li K, Wei X, Yang J. Cytokine networks that suppress fish cellular immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104769. [PMID: 37423553 DOI: 10.1016/j.dci.2023.104769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Immunosuppressive cytokines are a class of cytokines produced by immune cells and certain non-immune cells that have a suppressive effect on immune function. Currently known immunosuppressive cytokines include interleukin (IL)-10, transforming growth factor beta (TGF-β), IL-35, and IL-37. Although latest sequencing technologies have facilitated the identification of immunosuppressive cytokines in fish, IL-10 and TGF-β were the most well-known ones that have been widely studied and received continuous attention. Fish IL-10 and TGF-β have been identified as anti-inflammatory and immunosuppressive factors, acting on both innate and adaptive immune systems. However, unlike mammals, teleost fish underwent a third or fourth whole-genome duplication event, which significantly expanded the gene family associated with the cytokine signaling pathway, making the function and mechanism of these molecules need further investigation. In this review, we summarize the advances of studies on fish immunosuppressive cytokines IL-10 and TGF-β since their identification, mainly focusing on production, signaling transduction, and effects on the immunological function. This review aims to expand the understanding of the immunosuppressive cytokine network in fish.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
3
|
Lv M, Qiu X, Wang J, Wang Y, Liu Q, Zhou H, Zhang A, Wang X. Regulation of Il-2 on the expression of granzyme B- and perforin-like genes and its functional implication in grass carp peripheral blood neutrophils. FISH & SHELLFISH IMMUNOLOGY 2022; 124:472-479. [PMID: 35483596 DOI: 10.1016/j.fsi.2022.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Granzyme (Gzm) B and perforin, both as cytotoxic proteins, can collaborate to induce the death of target cells as well as the microbes. They were originally discovered in cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells and confer the cytotoxic activities of these cells. In the present study, the coding sequences of a granzyme b-like (gcgzmbl) and a perforin-like (gcprfl) genes were cloned from grass carp (Ctenopharyngodon idellus) and their specific antibodies were subsequently prepared and validated. The mRNA and protein expression of these two cytotoxic proteins in grass carp peripheral blood neutrophils was demonstrated by quantitative PCR (qPCR) and immunofluorescence staining, respectively. In the same cell model, expression of gcGzmbl and gcPrfl was stimulated by grass carp interleukin (Il)-2 in a dose- and time-dependent manners and Erk, NF-κB and Stat5 pathways were found to be involved in the regulation of Il-2 on the genes' expression. Additionally, glycolysis was proved to play a role in the stimulation of Il-2 on gcGzmbl and gcPrfl expression in peripheral blood neutrophils. As combating the invading microorganisms is one of the main functions of neutrophils, the roles of gcGzmbl and gcPrfl in the anti-bacterial activities of grass carp peripheral blood neutrophils were explored. Results showed that immunoneutralization of gcGzmbl or gcPrfl significantly attenuated the antimicrobial abilities of the neutrophils enhanced by Il-2. These findings shed a light on the expression, regulation and functions of granzyme B- and perforin-like proteins in fish peripheral blood neutrophils and enrich the understanding of Il-2 function in fish innate immunity.
Collapse
Affiliation(s)
- Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jiankang Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yawen Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Qingqing Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
4
|
Zhang XY, Zhuo X, Cheng J, Wang X, Liang K, Chen X. PU.1 Regulates Cathepsin S Expression in Large Yellow Croaker ( Larimichthys crocea) Macrophages. Front Immunol 2022; 12:819029. [PMID: 35069603 PMCID: PMC8766968 DOI: 10.3389/fimmu.2021.819029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Different morphologies have been detected in teleost macrophages. In this study, two macrophage cell lines were sub-cloned from a large yellow croaker head kidney cell line, LYCK. One type of sub-cloned cells was fusiform but the other was round, named LYC-FM and LYC-RM cells respectively, based on their morphologies. Both types showed the characteristics of macrophages, including expression of macrophage-specific marker genes, possession of phagocytic and bactericidal activities, and production of reactive oxygen species (ROS) and nitric oxide (NO). The transcription factor PU.1, crucial for the development of macrophages in mammals, was found to exist in two transcripts, PU.1a and PU.1b, in large yellow croaker, and constitutively expressed in LYC-FM and LYC-RM cells. The expression levels of PU.1a and PU.1b could be upregulated by recombinant large yellow croaker IFN-γ protein (rLcIFN-γ). Further studies showed that both PU.1a and PU.1b increased the expression of cathepsin S (CTSS) by binding to different E26−transformation−specific (Ets) motifs of the CTSS promoter. Additionally, we demonstrated that all three domains of PU.1a and PU.1b were essential for initiating CTSS expression by truncated mutation experiments. Our results therefore provide the first evidence that teleost PU.1 has a role in regulating the expression of CTSS.
Collapse
Affiliation(s)
- Xiang-Yang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyue Zhuo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Cheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohong Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kexin Liang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|