1
|
Huang Q, Zhu Y, Yu J, Fang L, Li Y, Wang M, Liu J, Yan P, Xia J, Liu G, Yang X, Zeng J, Guo L, Ruan G. Effects of sulfated β-glucan from Saccharomyces cerevisiae on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2022; 127:891-900. [PMID: 35810965 DOI: 10.1016/j.fsi.2022.06.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to examine the combined effects of sulfated β-Glucan from Saccharomyces cerevisiae (sGSC) on growth performance, antioxidant ability, nonspecific immunity, and intestinal flora of the red swamp crayfish (Procambarus clarkii). Four experimental diets (sGSC25, sGSC50, sGSC100 and sGSC200) with different levels of sGSC (0.025%, 0.05%, 0.1% and 0.2% in diet, respectively) were fed to juvenile crayfish (average weight: 2.5 ± 0.5 g) for 8 weeks. The control diet was given with 2000 mg/kg GSC (GSC200 group). The based control diet was given without sGSC or GSC (blank group). Each group had 3 parallel test pools, 20 crayfish were reared in each pool. At the end of the growth trial, adding dietary 0.025%-0.1% sGSC could significantly improve the growth performance, antioxidant capacity and immunity of crayfish. Compared with GSC, sGSC had a better effect at lower concentration. Higher concentration of sGSC (>0.1%) would cause some side effects. sGSC also could improve the structure of the intestinal flora and optimize the function of the flora. sGSC would increase the abundances of probiotics such as Hafnia and Acinetobacter, and decreases the abundances of maleficent bacteria such as Enterobacteriaceae. Higher concentration of sGSC (>0.1%) would increase the abundance of Aeromonas. To conclude, 0.025%-0.1% sGSC can be used as a supplement in crayfish feed to increase growth, immunity, and antioxidant capacity and improve the structure of intestinal flora. These results provided a theoretical basis for the application of sGSC instead of GSC in crayfish breeding. It will be necessary to further study the optimal concentration of sGSC in feed additives in different growth stages of crayfish in the future.
Collapse
Affiliation(s)
- Qi Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yiling Zhu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jie Yu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Liu Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Yana Li
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jiali Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Pupu Yan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jinjin Xia
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Xiaolin Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Liwei Guo
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| | - Guoliang Ruan
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
2
|
Antibacterial and Freshness-Preserving Mechanisms of Chitosan-Nano-TiO2-Nano-Ag Composite Materials. COATINGS 2021. [DOI: 10.3390/coatings11080914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With chitosan, nano-TiO2 and nano-Ag as raw materials, nano-TiO2 and nano-TiO2-Ag were modified by a surface modifier-sodium laurate. Chitosan (CTS), chitosan-nano-TiO2 (CTS-TiO2), and chitosan-nano-TiO2-nano-Ag (CTS-TiO2-Ag) composite materials and corresponding films were prepared by a solution co-blending method. Then, the antibacterial performances of the above three types of materials against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis were compared. Moreover, potato and strawberry weight loss rates, peroxidase activity, and vitamin C contents after different film coating treatments were measured. Compared with CTS films, the CTS-TiO2-Ag and CTS-TiO2 composite films both showed better physical properties, and both demonstrated higher antibacterial effects, especially for E. coli. Measurement of physiological indices in fruits and vegetables showed that the freshness-preserving effect of CTS-TiO2-Ag coating films was the most significant. In all, the CTS-TiO2-Ag coating films can actively contribute to the storage of fruits and vegetables at room temperature, and better ensure product quality. Thus, such films are meaningful for research and development of new fruit freshness-keeping techniques and materials.
Collapse
|
3
|
Cao XT, Pan XY, Sun M, Liu Y, Lan JF. Hepatopancreas-Specific Lectin Participates in the Antibacterial Immune Response by Regulating the Expression of Antibacterial Proteins. Front Immunol 2021; 12:679767. [PMID: 34177924 PMCID: PMC8226264 DOI: 10.3389/fimmu.2021.679767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
The hepatopancreas is an important digestive and immune organ in crustacean. There were low but stable numbers of microbes living in the hemolymph of crustacean, whereas the organs (including hepatopancreas) of crustacean were immersed in the hemolymph. It is very important to study the immune mechanism of the hepatopancreas against bacteria. In this study, a novel CTL (HepCL) with two CRDs, which was mainly expressed in the hepatopancreas, was identified in red swamp crayfish (Procambarus clarkii). HepCL binds to bacteria in vitro and could enhance bacterial clearance in vivo. Compared with the C-terminal CRD of HepCL (HepCL-C), the N-terminal CRD (HepCL-N) showed weaker bacterial binding ability in vitro and stronger bacterial clearance activity in vivo. The expression of some antimicrobial proteins, such as FLP, ALF1 and ALF5, was downregulated under knockdown of HepCL or blocked with Anti-HepCL after challenge with Vibrio in crayfish. These results demonstrated that HepCL might be involved in the antibacterial immune response by regulating the expression of antimicrobial proteins.
Collapse
Affiliation(s)
- Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiao-Yi Pan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Meng Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yan Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|