1
|
The Connection between Immunocompetence and Reproduction in Wildlife. Life (Basel) 2023; 13:life13030785. [PMID: 36983939 PMCID: PMC10051471 DOI: 10.3390/life13030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Reproduction rate is important for the survival of animal populations. During gravidity, a trade-off occurs between the individual well-being of gravid females and investment in offspring. Due to the high synthesis and energy requirements for the growing fetus, other physiological activities are downregulated in pregnant females. This causes changes in the composition of the reproductive microbiome and a decreased immune response to presented antigens and pathogens. As a result, the immunocompetence of gravid wild animals declines. In general, therefore, increased infection rates during pregnancy can be observed in all wildlife species studied. In the course of evolution, however, this has apparently evolved as a suitable strategy to ensure the survival of the population as a whole.
Collapse
|
2
|
Nynca J, Dietrich MA, Ciereszko A. DIGE Analysis of Fish Tissues. Methods Mol Biol 2023; 2596:303-322. [PMID: 36378447 DOI: 10.1007/978-1-0716-2831-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples and proteins of treated/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
3
|
Wang L, Dong X, Wu Y, Zhou Q, Xu R, Ren L, Zhang C, Tao M, Luo K, Zeng Y, Liu S. Proteomics-based molecular and functional characteristic profiling of muscle tissue in Triploid crucian carp. Mol Omics 2022; 18:967-976. [PMID: 36349986 DOI: 10.1039/d2mo00215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Triploid crucian carp (TCC) is a kind of artificially bred fish with huge economic value to China. It has several excellent characteristics, such as fast growth, strong disease resistance and delicious taste. However, as a regionally specific fish, the underlying molecular mechanisms of these characteristics are largely unknown. In this study, we performed quantitative proteomics on the muscle tissues of TCC and its parents, allotetraploid (♂), red crucian carp (♀) and common carp. Combined with multiple bioinformatic analysis, we found that the taste of TCC can be mainly attributed to umami amino acid-enriched proteins such as PURBA, PVALBI and ATP5F1B, and that its rapid growth can be mainly ascribed to the high expression and regulation of metabolism-related proteins such as NDUFS1, ENO1A and CS. These play significant roles in substrate and energy metabolism, as well as in bias transformation. Subsequently, we identified several proteins, including MDH1AA, GOT1 and DLAT, that may serve as potential regulators of innate immunity by regulating the biosynthesis and transformation of significant antibiotics and antimicrobial peptides. In conclusion, this study can serve as a significant reference for similar investigations and shed light on the molecular and biological functions of individual proteins in TCC muscle tissue.
Collapse
Affiliation(s)
- Lingxiang Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China. .,National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoping Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China. .,National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yun Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China. .,National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qian Zhou
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Rongfang Xu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Yong Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China. .,National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|