1
|
Zhang J, Wu Y, Wang Y, Wang J, Ye Y, Yin H, Sun N, Qin B, Sun N. TRIM35 Negatively Regulates the cGAS-STING-Mediated Signaling Pathway by Attenuating K63-Linked Ubiquitination of STING. Inflammation 2024:10.1007/s10753-024-02093-4. [PMID: 39088122 DOI: 10.1007/s10753-024-02093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
The cGAS-STING-mediated antiviral response plays an important role in the defense against DNA virus infection. Tripartite motif protein 35 (TRIM35), an E3 ubiquitin ligase, was identified as a positive regulator of RLR-mediated antiviral signaling in our previous study, but the effect of TRIM35 on the cGAS-STING signaling pathway has not been elucidated. Herein, we showed that TRIM35 negatively regulates the cGAS-STING signaling pathway by directly targeting STING. TRIM35 overexpression significantly inhibited the cGAMP-triggered phosphorylation of TBK1 and IRF3, attenuating IFN-β expression and the downstream antiviral response. Mechanistically, TRIM35 colocalized and directly interacted with STING in the cytoplasm. TRM35 removed K63-linked ubiquitin from STING through the C36 and C44 sites in the RING domain, which impaired the interaction of STING with TBK1 or IKKε. In addition, we demonstrated that the RING domain is a key region for the antiviral effects of TIRM35. These results collectively indicate that TRIM35 negatively regulates type I interferon (IFN-I) production by targeting and deubiquitinating STING. TRIM35 may be a potential therapeutic target for controlling viral infection.
Collapse
Affiliation(s)
- Jikai Zhang
- Xuzhou Medical University, Xuzhou, China
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuhao Wu
- Xuzhou Medical University, Xuzhou, China
| | - Yiwen Wang
- Xuzhou Medical University, Xuzhou, China
| | - Jing Wang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yinlin Ye
- Xuzhou Medical University, Xuzhou, China
| | - Hang Yin
- Xuzhou Medical University, Xuzhou, China
| | - Ningye Sun
- Xuzhou Medical University, Xuzhou, China
| | | | - Nan Sun
- Xuzhou Medical University, Xuzhou, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Liu Y, Zhang L, Chen X, Sun C, Zhang Y, Li Y, Li C. Functional characterization of porcine nucleophosmin (NPM1) gene in promoting the replication of Japanese encephalitis virus and induction of inflammatory cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104902. [PMID: 37536401 DOI: 10.1016/j.dci.2023.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Nucleophosmin (NPM1) is a multifunctional nucleolar protein that plays a role in cell cycle control, tumorigenesis, induction of the inflammatory cytokine, virus replication, as well as the cellular responses to a variety of stress stimuli. However, its physiological functions in pigs have not been well understood. Here, we cloned the porcine NPM1 (porNPM1) gene and analyzed the functions of the porNPM1 protein in pigs. The full-length porNPM1 gene encoded a 294-amino acid protein with 94.5%-99.3% sequence identity to its orthologues in mammals and was extensively expressed in various pig tissues at the mRNA level. The porNPM1 primarily localizes in the nucleus of ST cells, while it translocates from the nucleus to nucleoplasm upon UV irradiation or H2O2 treatment. Notably, JEV infection blocked the translocation of porNPM1 from the nucleolus to the nucleoplasm. Furthermore, porNPM1 interacted with the JEV C protein and facilitated JEV replication in ST cells. The overexpression and knockdown of porNPM1 respectively enhanced or impaired JEV replication, suggesting the important role of porNPM1 in JEV replication. Additionally, the purified ectodomain of porNPM1 induced the production of inflammatory cytokines (TNF-α, IL-6, and IL-8). Together, these data demonstrated that porNPM1 is involved in cellular stress stimuli, JEV replication, and induction of inflammatory cytokines.
Collapse
Affiliation(s)
- Ying Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linjie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chuwen Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yanbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Zhu N, Zhang F, Zhou H, Ma W, Mao H, Wang M, Ke Z, Wang J, Qi L. Mechanisms of Immune-Related Long Non-Coding RNAs in Spleens of Mice Vaccinated with 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23). Vaccines (Basel) 2023; 11:vaccines11030529. [PMID: 36992112 DOI: 10.3390/vaccines11030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The 23-valent pneumococcal vaccine (PPV23) is a classical common vaccine used to prevent pneumococcal disease. In past decades, it was thought that vaccination with this vaccine induces humoral immunity, thereby reducing the disease associated with infection with 23 common serotypes of Streptococcus pneumoniae (Sp). However, for this polysaccharide vaccine, the mechanism of immune response at the transcriptional level has not been fully studied. To identify the lncRNAs (long noncoding RNAs) and mRNAs in spleens related to immunity after PPV23 vaccination in mice, high-throughput RNA sequencing of spleens between a PPV23 treatment group and a control group were performed and evaluated in this study. The RNA-seq results identified a total of 41,321 mRNAs and 34,375 lncRNAs, including 55 significantly differentially expressed (DE) mRNAs and 389 DE lncRNAs (p < 0.05) between the two groups. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to T-cell costimulation, positive regulation of alpha–beta T-cell differentiation, the CD86 biosynthetic process, and the PI3K-Akt signaling pathway, indicating that the polysaccharide component antigens of PPV23 might activate a cellular immune response during the PPV23 immunization process. Moreover, we found that Trim35 (tripartite motif containing 35), a target gene of lncRNA MSTRG.9127, was involved in regulating immunity. Our study provides a catalog of lncRNAs and mRNAs associated with immune cells’ proliferation and differentiation, and they deserve further study to deepen the understanding of the biological processes in the regulation of PPV23 during humoral immunity and cellular immunity.
Collapse
Affiliation(s)
- Nan Zhu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Fan Zhang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Huan Zhou
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Wei Ma
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| |
Collapse
|
4
|
Duck TRIM35 Promotes Tembusu Virus Replication by Interfering with RIG-I-Mediated Antiviral Signaling in Duck Embryo Fibroblasts. Microbiol Spectr 2022; 10:e0385822. [PMID: 36445078 PMCID: PMC9769614 DOI: 10.1128/spectrum.03858-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In China, the duck industry has been severely impacted by the newly emerging duck Tembusu virus (DTMUV). For DTMUV to successfully infect host cells, it employs several strategies that subvert the host's innate immune response. It has been found that several viral proteins encoded by DTMUV have strategically targeted the crucial molecules of the RIG-I-like Receptor (RLR) signaling pathway to antagonize host antiviral responses. However, it is not well known how the host proteins manipulated by DTMUV contribute to innate immune evasion. The present study reports that duck TRIM35 (duTRIM35) antagonizes DTMUV-induced innate immune responses by targeting duck RIG-I (duRIG-I) in duck embryo fibroblasts. A significant increase in duTRIM35 expression occurred during DTMUV infection. DuTRIM35 overexpression suppressed DTMUV-triggered expression of interferon beta (IFN-β) and interferon-stimulated genes (ISGs), promoting viral replication, whereas knockdown of duTRIM35 augments the innate immune response, reducing viral replication. Furthermore, duTRIM35 significantly impaired the IFN-β expression mediated by duRIG-I but not by other RLR signaling molecules. Mechanistically, duTRIM35 interfered with duRIG-I-duTRIM25 interaction and impeded duTRIM25-mediated duRIG-I ubiquitination by interacting with both duRIG-I and duTRIM25. Our findings indicate that duTRIM35 expression induced by DTMUV infection interfered with the duRIG-I-mediated antiviral response, illustrating a novel strategy in which DTMUV can evade the host's innate immunity. IMPORTANCE Duck Tembusu virus (DTMUV), an emerging flavivirus pathogen causing a substantial drop in egg production and severe neurological disorders in duck populations, has led to massive economic losses in the global duck industry. DTMUV has employed various strategies to subvert the host's innate immune response to establish a productive infection in host cells. In this study, we report that duck TRIM35 (duTRIM35) expression was upregulated upon DTMUV infection in vitro and in vivo, and its expression antagonized DTMUV-induced innate immune responses by targeting duck RIG-I (duRIG-I) in duck embryo fibroblasts. Further studies suggest that duTRIM35 interfered with duRIG-I-duTRIM25 interaction and impeded duTRIM25-mediated duRIG-I ubiquitination by interacting with both duRIG-I and duTRIM25. Together, these results revealed that duTRIM35 expression induced by DTMUV infection downregulated duRIG-I-mediated host antiviral response, which elucidated a novel strategy of DTMUV for innate immune evasion.
Collapse
|
5
|
Li J, Teng P, Yang F, Ou X, Zhang J, Chen W. Bioinformatics and Screening of a Circular RNA-microRNA-mRNA Regulatory Network Induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci 2022; 23:ijms23094628. [PMID: 35563023 PMCID: PMC9101002 DOI: 10.3390/ijms23094628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Hand, foot and mouth disease (HFMD) caused by Coxsackievirus Group B5 (CVB5) is one of the most common herpetic diseases in human infants and children. The pathogenesis of CVB5 remains unknown. Circular RNAs (CircRNAs), as novel noncoding RNAs, have been shown to play a key role in many pathogenic processes in different species; however, their functions during the process of CVB5 infection remain unclear. In the present study, we investigated the expression profiles of circRNAs using RNA sequencing technology in CVB5-infected and mock-infected human rhabdomyosarcoma cells (CVB5 virus that had been isolated from clinical specimens). In addition, several differentially expressed circRNAs were validated by RT-qPCR. Moreover, the innate immune responses related to circRNA-miRNA-mRNA interaction networks were constructed and verified. A total of 5461 circRNAs were identified at different genomic locations in CVB5 infections and controls, of which 235 were differentially expressed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that the differentially expressed circRNAs were principally involved in specific signaling pathways related to ErbB, TNF, and innate immunity. We further predicted that novel_circ_0002006 might act as a molecular sponge for miR-152-3p through the IFN-I pathway to inhibit CVB5 replication, and that novel_circ_0001066 might act as a molecular sponge for miR-29b-3p via the NF-κB pathway and for the inhibition of CVB5 replication. These findings will help to elucidate the biological functions of circRNAs in the progression of CVB5-related HFMD and identify prospective biomarkers and therapeutic targets for this disease.
Collapse
|