1
|
Yu Z, Liu G, Li S, Hong Y, Zhao S, Zhou M, Tan X. Effects of Fermented Pomegranate Peel Polyphenols on the Growth Performance, Immune Response, Hepatopancreatic Health, and Disease Resistance in White Shrimp ( Litopenaeus vannamei). AQUACULTURE NUTRITION 2024; 2024:9966772. [PMID: 39633958 PMCID: PMC11617047 DOI: 10.1155/anu/9966772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
This study evaluated the growth performance, immune response, hepatopancreatic health, and disease resistance in Litopenaeus vannamei fed diets supplemented with fermented pomegranate peel polyphenols (FPPP) for 45 days. Five diets were formulated to contain various levels of FPPP: FP0 (no FPPP), FPPP inclusion at 0.015% (FP1), 0.030% (FP2), 0.060% (FP3), and 0.120% (FP4). The results indicated there were no significant variations in weight gain rate (WGR), specific growth rate (SGR), and feed conversion rate (FCR) of shrimp in all treatment groups (p > 0.05), but the survival (SR) of shrimp was significantly higher in all groups with the addition of FPPP (p < 0.05). Compared with FP0 group, the contents of total protein (TP) and globulin (GLB) in serum biochemical indexes of FP3 and FP4 groups were significantly increased, and the content of blood urea nitrogen (BUN) was significantly decreased (p < 0.05). Compared with FP0 group, the activities of superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (AKP), acid phosphatase (ACP), and lysozyme (LZM) in the hepatopancreas and serum of FP3 and FP4 groups were significantly increased (p < 0.05). Similarly, the activities of glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and phenoloxidase (PO) in the hepatopancreas and serum of FP2 group were significantly higher than those of FP0 group (p < 0.05). In addition, the content of malondialdehyde (MDA) in the hepatopancreas and serum of shrimp in FPPP-added groups was decreased (p < 0.05). Compared with FP0 group, the expression levels of SOD, CAT, glutathione S-transferase (GST), LZM, prophenoloxidase (ProPO), penaeidin-3 (Pen3), Crustin, immune deficiency (Imd), Toll, and Relish genes were significantly upregulated in the hepatopancreas of shrimp in FP3 and FP4 groups (p < 0.05). Additionally, increasing the addition level of FPPP resulted in a more compact hepatosomal arrangement of the shrimp's hepatopancreas, a more visible star-shaped lumen structure, and a significantly higher number of B cells. Finally, the cumulative SR of shrimp in FPPP groups was significantly higher than that in FP0 group after 7 days of infection with Vibrio alginolyticus (p < 0.05). In summary, dietary supplementation of FPPP can improve SR, immunity, and hepatopancreatic health and resistance to Vibrio alginolyticus of L. vannamei.
Collapse
Affiliation(s)
- Zhoulin Yu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guangye Liu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Sijie Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, China
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaohong Tan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
2
|
Nugraha MAR, Lin YR, Dewi NR, Huang HT, Nan FH, Hu YF. Effects of Taiwanese indigenous cinnamon (Cinnamomum osmophloeum) leaf hot-water extract on nonspecific immune responses, resistance against Vibrio parahaemolyticus, nonviable cells, and haemocyte subpopulations in white shrimp (Penaeusvannamei). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109680. [PMID: 38849108 DOI: 10.1016/j.fsi.2024.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
This study investigated the effects of Cinnamomum osmophloeum leaf hot-water extract (CLWE) on nonspecific immune responses and resistance to Vibrio parahaemolyticus in white shrimp (Penaeus vannamei). Firstly, a cell viability assay demonstrated that the CLWE is safe to white shrimp heamocytes in the concentration of 0-500 mg L-1. Haemocytes incubated in vitro with 10 and 50 mg L-1 of CLWE showed significantly higher response in superoxide anion production, PO activity, and phagocytic activity. In the in vivo trials, white shrimp were fed with 0, 0.5, 1, 5, and 10 g kg-1 CLWE supplemented feeds (designated as CLWE 0, CLWE 0.5, CLWE 1, CLWE 5, and CLWE 10, respectively) over a period of 28 days. In vivo experiments demonstrated that CLWE 0.5 feeding group resulted in the highest total haemocyte count, superoxide anion production, phenoloxidase activity, and phagocytic activity. Moreover, CLWE 0.5 supplemented feed significantly upregulated the clotting system, antimicrobial peptides, pattern recognition receptors, pattern recognition proteins, and antioxidant defences in white shrimp. Furthermore, the shrimp were infected with V. parahaemolyticus injections after 14 days of feeding as challenge test. Based on the challenge test result, both CLWE 0.5 and CLWE 5 demonstrated a strong resistance to V. parahaemolyticus. These two dosages effectively reduced the number of nonviable cells and activated different haemocyte subpopulations. These findings indicated that treatment with CLWE 0.5 could promote nonspecific immune responses, immune-related gene expression, and resistance to V. parahaemolyticus in white shrimp.
Collapse
Affiliation(s)
| | - Yu-Ru Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Novi Rosmala Dewi
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| |
Collapse
|
3
|
Seong Wei L, Mohamad Sukri SA, Tahiluddin AB, Abdul Kari Z, Wee W, Kabir MA. Exploring beneficial effects of phytobiotics in marine shrimp farming: A review. Heliyon 2024; 10:e31074. [PMID: 39113972 PMCID: PMC11304020 DOI: 10.1016/j.heliyon.2024.e31074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 08/10/2024] Open
Abstract
Marine shrimp farming, mainly Penaeus monodon and Litopenaeus vannamei, is an important component of the aquaculture industry. Marine shrimp farming helps produce a protein source for humans, provides job opportunities, and generates lucrative profits for investors. Intensification farming practices can lead to poor water quality, stress, and malnutrition among the farmed marine shrimp, resulting in disease outbreaks and poor production, impeding the development of marine shrimp farming. Antibiotics are the common short-term solution to treat diseases in marine shrimp farming. Moreover, the negative impacts of using antibiotics on public health and the environment erode consumer confidence in aquaculture products. Recently, research on using phytobiotics as a prophylactic agent in aquaculture has become a hot topic. Various phytobiotics have been explored to reveal their beneficial effects on aquaculture species. In this review paper, the sources and modes of action of phytobiotics are presented. The roles of phytobiotics in improving growth performance, increasing antioxidant capacity, enhancing the immune system, stimulating disease resistance, and mitigating stress due to abiotic factors in marine shrimp culture are recapitulated and discussed.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
- Tropical Rainforest Research Centre (TRaCe), Universiti Malaysia Kelantan, Pulau Banding, 33300, Gerik, Perak, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Albaris B. Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao, Tawi-Tawi, 7500, Philippines
- Department of Aquaculture, Institute of Science, Kastamonu University, Kastamonu, 37200, Turkey
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center for Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | |
Collapse
|
4
|
Ghosh AK, Islam HMR, Banu GR, Panda SK, Schoofs L, Luyten W. Effects of Piper betle and Phyllanthus emblica leaf extracts on the growth and resistance of black tiger shrimp, Penaeus monodon, against pathogenic Vibrio parahaemolyticus. AQUACULTURE INTERNATIONAL 2024; 32:3689-3708. [DOI: 10.1007/s10499-023-01345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2025]
|
5
|
Sun D, Lv J, Li Y, Wu J, Liu P, Gao B. Comparative Transcriptome Analysis of the Response to Vibrio parahaemolyticus and Low-Salinity Stress in the Swimming Crab Portunus trituberculatus. BIOLOGY 2023; 12:1518. [PMID: 38132344 PMCID: PMC10741082 DOI: 10.3390/biology12121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Vibrio parahaemolyticus is one of the main pathogenic bacteria of Portunus trituberculatus and causes mass mortality of P. trituberculatus in aquaculture. In addition, low-salinity stimulation makes P. trituberculatus more susceptible to V. parahaemolyticus infections. In order to elucidate the molecular mechanism of resistance to V. parahaemolyticus in P. trituberculatus, comparative transcriptomic analysis of blood cells stimulated by low salinity and V. parahaemolyticus was carried out in this study. Transcriptome sequencing of low-salinity stress and pathogen infection at different time points was completed using Illumina sequencing technology. A total of 5827, 6432, 5362 and 1784 differentially expressed genes (DEGs) involved in pathways related to ion transport and immunoregulation were found under low-salinity stress at 12, 24, 48 and 72 h compared with the control at 0 h. In contrast, 4854, 4814, 5535 and 6051 DEGs, which were significantly enriched in Toll and IMD signaling pathways, were found at 12, 24, 48 and 72 h compared with the control at 0 h under V. parahaemolyticus infection. Among them, 952 DEGs were shared in the two treatment groups, which were mainly involved in apoptosis and Hippo signaling pathway. Cluster analysis screened 103 genes that were differentially expressed in two factors that were negatively correlated, including immunoglobulin, leukocyte receptor cluster family, scavenger receptor, macroglobulin and other innate-immune-related genes. These results provide data support for the analysis of the mechanisms of immunity to V. parahaemolyticus under low-salinity stress in P. trituberculatus and help to elucidate the molecular mechanisms by which environmental factors affect immunity.
Collapse
Affiliation(s)
- Dongfang Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.S.); (J.L.); (Y.L.); (J.W.); (P.L.)
| | - Jianjian Lv
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.S.); (J.L.); (Y.L.); (J.W.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Yukun Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.S.); (J.L.); (Y.L.); (J.W.); (P.L.)
| | - Jie Wu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.S.); (J.L.); (Y.L.); (J.W.); (P.L.)
| | - Ping Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.S.); (J.L.); (Y.L.); (J.W.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Baoquan Gao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (D.S.); (J.L.); (Y.L.); (J.W.); (P.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
6
|
Wang Y, Li H, Wei J, Hong K, Zhou Q, Liu X, Hong X, Li W, Liu C, Zhu X, Yu L. Multi-Effects of Acute Salinity Stress on Osmoregulation, Physiological Metabolism, Antioxidant Capacity, Immunity, and Apoptosis in Macrobrachium rosenbergii. Antioxidants (Basel) 2023; 12:1836. [PMID: 37891915 PMCID: PMC10604327 DOI: 10.3390/antiox12101836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Salinity stress can trigger a series of physiological changes. However, the mechanism underlying the response to acute salinity stress in Macrobrachium rosenbergii remains poorly understood. In this study, osmoregulation, physiological metabolism, antioxidant capacity, and apoptosis were examined over 96 h of acute salinity stress. Hemolymph osmolality increased with increasing salinity. After 48 h of salinity exposure, the glucose, triglycerides, total protein, and total cholesterol contents in two salinity stress groups (13 and 26‱ salinity) were significantly lower than those in the 0‱ salinity group. The highest levels of these parameters were detected at 6 h; however, superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) were the lowest at 96 h in the 13‱ salinity group. The activity of immunity-related enzyme alkaline phosphatase (AKP) showed a decreasing trend with increasing salinity and remained at a low level in the 26‱ salinity group throughout the experiment. No significant differences were observed in aspartate aminotransferase (AST), alanine aminotransferase (ALT), or lysozyme (LZM) among the three treatments at 96 h. After 96 h of salinity treatments, the gill filament diameter significantly decreased, and a more pronounced terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive signal was detected in the 13‱ and 26‱ groups compared to that in the 0‱ group. Expression levels of apoptosis-related genes, including Cysteine-aspartic acid protease 3 (Caspase 3), Cysteine-aspartic acid protease 8 (Caspase 8), Cytochrome c (Cyt-c), tumor suppressor gene (P53), Nuclear factor kappa-B (NF-κB), and B cell lymphoma 2 ovarian killer (Bok) were significantly higher in the 26‱ salinity group than in the other groups at 24 h, but lower than those in the 0‱ salinity group at 96 h. Cyt-c and P53 levels exhibited a significantly positive relationship with MDA, AST, and LZM activity during salinity stress. In the 13‱ salinity group, Bok expression was significantly correlated with SOD, T-AOC, AKP, acid phosphatase, and LZM activity, whereas in the 26‱ group, the AST content was positively correlated with Caspase 8, Cyt-c, and P53 expression. A significant negative relationship was observed between Caspase 3 expression and catalase (CAT) activity. These findings provide insight into the mechanisms underlying the response to acute salinity stress and will contribute to improving M. rosenbergii aquaculture and management practices.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Huarong Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Wei
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Kunhao Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Qiaoyan Zhou
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Chao Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (H.L.); (J.W.); (K.H.); (Q.Z.); (X.L.); (X.H.); (W.L.); (C.L.)
| |
Collapse
|
7
|
Ghosh AK. Functionality of probiotics on the resistance capacity of shrimp against white spot syndrome virus (WSSV). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108942. [PMID: 37451524 DOI: 10.1016/j.fsi.2023.108942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Shrimp aquaculture is currently regarded as a significant commercial and food production sector due to its growing importance as a source of human-consumable protein, As shrimp farming has become more intensive, disease outbreaks have become more common, necessitating the overuse of antimicrobial drugs, which has had a number of unintended consequences. The white spot syndrome virus (WSSV) is now recognized as one of the world's most pervasive and potentially fatal diseases affecting shrimp. However, there is currently no cure to prevent the disease's uncontrolled incidence and spread. Probiotics are currently favoured over these antimicrobial substances because of their ability to stimulate disease resilience in shrimp farms by strengthening the immune systems naturally. Probiotics for bacterial infections such as vibriosis are well documented, whereas research is still required to identify the legitimate strains for viral diseases. The utilization of these probiotics as a therapy for and preventative measure against WSSV in shrimp farming is a cutting-edge method that has proven to be effective. Some probiotic strains, such as Bacillus spp, Lactobacillus, and Pediococcus pentosaceus, have been displayed to enhance the innate immunity of shrimp against WSSV, reduce viral load, increase digestibility and growth, and support the gut microbiome of the host in multiple investigations. The present review explores recent developments regarding the function of probiotics in shrimp, with a focus on their anti-WSSV activity.
Collapse
Affiliation(s)
- Alokesh Kumar Ghosh
- Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, KU Leuven, Belgium; Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
8
|
Ghosh AK, Ahmmed SS, Islam HMR, Hasan MA, Banu GR, Panda SK, Schoofs L, Luyten W. Oral administration of Zingiber officinale and Aegle marmelos extracts enhances growth and immune functions of the shrimp Penaeus monodon against the white spot syndrome virus (WSSV). AQUACULTURE INTERNATIONAL 2023. [DOI: 10.1007/s10499-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
|
9
|
Delgado DLC, Caceres LLC, Gómez SAC, Odio AD. Effect of dietary garlic ( Allium sativum) on the zootechnical performance and health indicators of aquatic animals: A mini-review. Vet World 2023; 16:965-976. [PMID: 37576751 PMCID: PMC10420702 DOI: 10.14202/vetworld.2023.965-976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/31/2023] [Indexed: 08/15/2023] Open
Abstract
Considerable efforts have been made by modern aquaculture to mitigate the environmental damages caused by its practices while also attempting to improve the quality of the aquatic organisms by promoting alternatives, such as the use of natural products, like garlic (Allium sativum), and instead of chemical agents. Garlic has multiple properties, including antifungal, antibacterial, antiviral, antitoxic, and anticancer effects. In fish, the antiparasitic activity of garlic is one of the most reported effects in the literature, mainly using immersion baths for aquatic organisms. Using garlic also has an antimicrobial effect on the culture of aquatic organisms. Therefore, this review focuses on the impact of garlic on the health and production of aquatic organisms.
Collapse
|
10
|
Chen YT, Kuo CL, Wu CC, Liu CH, Hsieh SL. Effects of Panax notoginseng Water Extract on Immune Responses and Digestive Enzymes in White Shrimp Litopenaeus vannamei. Animals (Basel) 2023; 13:ani13071131. [PMID: 37048388 PMCID: PMC10093085 DOI: 10.3390/ani13071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Panax notoginseng (Burk) F. H. Chen is a traditional Chinese herbal medicine commonly used in clinical applications. This study examined the effects of the Panax notoginseng water extract (PNWE) on the immune responses and digestive enzyme activity of Litopenaeus vannamei (L. vannamei). The PNWE (50, 100, and 200 μg (g shrimp)-1) was injected into L. vannamei to analyze the immune response parameters, including the total haemocyte count (THC), granular haemocytes (GC), semi-granular haemocytes (SGC), hialin haemocyte (HC), the respiratory burst (RB), the phagocytic ratio (PR), the phagocytic index (PI), and phenoloxidase (PO). We evaluated the activity of the intestinal digestive enzymes (trypsin, chymotrypsin, amylase, and lipase), the histopathology, and the intestine Vibrio numbers. The results showed that different concentrations of the PNWE significantly increased THC, GC, SGC, PO and RB activity, the PR, and the PI of L. vannamei while reducing the HC. In addition, the PNWE also significantly increased the chymotrypsin, trypsin, and amylase activity of L. vannamei. Furthermore, 50 µg (g shrimp)-1 of PNWE regulated the lipase activity. Additionally, different concentrations of the PNWE significantly reduced the Vibrio numbers in the intestine without damaging the hepatopancreas and intestine tissues. These results indicate that the PNWE improves the immune responses of L. vannamei by increasing the haemocyte count and regulating intestinal digestive enzymes.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chia-Ling Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|