1
|
Ning X, Han B, Shi Y, Qian X, Zhang K, Yin S. Hypoxia stress induces complicated miRNA responses in the gill of Chinese mitten crab (Eriocheir sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106619. [PMID: 37379777 DOI: 10.1016/j.aquatox.2023.106619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Hypoxia caused by global climate change and human activities has become a growing concern eliciting serious damages to aquatic animals. microRNAs (miRNAs) as non-coding regulatory RNAs exert vital effects on hypoxia responses. Chinese mitten crab (Eriocheir sinensis) with the habitat on the sediment surface or the pond bottom is susceptible to oxygen deficiency. However, whether miRNAs are involved in the response of the crabs to hypoxia stress remains enigmas. In this study, we conducted the whole transcriptome-based miRNA-mRNA integrated analysis of Chinese mitten crab gill under hypoxic condition for 3 h and 24 h We found that the acute hypoxia induces complex miRNA responses with the extensive influences on their target genes that engaged in various bio-processes, especially those associated with immunity, metabolism and endocrine. The impact of hypoxia on crab miRNAs is severer, as the exposure lasts longer. In response to the dissolved oxygen fluctuation, the HIF-1 signaling is activated by miRNAs to cope with the hypoxia stress through strategies including balancing inflammatory and autophagy involved in immunity, changing metabolism to reducing energy consumption, and enhancing oxygen-carrying and delivering capacities. The miRNAs and their corresponding target genes engaged in hypoxia response were intertwined into an intricate network. Moreover, the top hub molecular, miR-998-y and miR-275-z, discovered from the network might serve as biomarkers for hypoxia response in crabs. Our study provides the first systemic miRNA profile of Chinese mitten crab induced by hypoxia stress, and the identified miRNAs and the interactive network add new insights into the mechanism of hypoxia response in crabs.
Collapse
Affiliation(s)
- Xianhui Ning
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Bing Han
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yaxuan Shi
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Kai Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Jiang S, Zhang W, Qian X, Ji J, Ning X, Zhu F, Yin S, Zhang K. Effects of hypoxia and reoxygenation on apoptosis, oxidative stress, immune response and gut microbiota of Chinese mitten crab, Eriocheir sinensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106556. [PMID: 37182272 DOI: 10.1016/j.aquatox.2023.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Hypoxia causes irreversible damage to aquatic animals. However, few reports have explored the effect of hypoxia stress and reoxygenation on intestinal homeostatic imbalance and consequent hepatopancreas-intestine axis health in crustacean. Herein, 180 Chinese mitten crabs (Eriocheir sinensis) were equally divided into control (DO 7.0 ± 0.2 mg/L) and treatment groups. The treatment group was exposed with continuous hypoxic stress (DO 3.0 ± 0.1 mg/L) for 96 h and then reoxygenated (DO 6.9 ± 0.1 mg/L) for 96 h. The effects on intestines and hepatopancreas of Chinese mitten crab were investigated, and the role of gut microbiota in hypoxia induced damages was explored. Hypoxia impaired intestinal tissue structure, and decreased swelling and the number of goblet cells, which are features that did not significantly improve after reoxygenation. With prolonged hypoxic stress, the activities of antioxidant enzymes (LDH, SOD and CAT) and MDA content in intestine were significantly elevated. Moreover, the level of oxidative stress increased, which led to upregulated apoptosis rate and expression of apoptosis-related genes (Caspase 3, Caspase 8 and BAX). In addition, the expression of immune related genes (MyD88, ALF1, Relish and Crustin) in hepatopancreas and intestine was both significantly induced under hypoxia, which activated the immune defense mechanism of Chinese mitten crab to adapt to the hypoxic environment. Furthermore, diversity and relative abundance of gut microbiota decreased noticeably during hypoxic stress; the number of beneficial bacteria downregulated. Finally, KEGG pathway analysis revealed that nine pathways were significantly enriched in intestinal microorganisms, including autoimmune disease and environmental adaptation. Collectively, these results suggested that hypoxia negatively affected E. sinensis health by triggering oxidative stress, altering the composition of the gut microbiota and inhibiting the immune response.
Collapse
Affiliation(s)
- Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Weijian Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Fei Zhu
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| |
Collapse
|