1
|
Su Y, Yang F, Li F. Comparison analysis of circulating hemocytes in decapod crustaceans. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109947. [PMID: 39370022 DOI: 10.1016/j.fsi.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Hemocytes are the primary immune cells of crustaceans. Few comparison studies have been done among different crustaceans and some key parameters of circulating hemocytes have not been investigated. Here, we compared the circulating hemocytes in six decapod crustaceans, Cherax quadrinatus, Procambarus clarkii, Penaeus vannamei, Penaeus monodon, Eriocheir sinensis, and Scylla paramamosain. Although the hemocytes of different species vary in size, they share common morphological characteristics. Based on their morphological features, circulating hemocytes can be basically classified into granular cells (GCs), semi-granular cells (SGCs), and hyaline cells (HCs). In the six decapods analyzed in this study, the proportion of GCs varied from 10 % to 30 %. P. vannamei, P. monodon, and P. clarkii had fewer GCs in circulation than the other three species. Correspondingly, proliferation was detected only in a small portion of cells in P. vannamei, P. monodon, and P. clarkii under physical conditions. The hemocyte renewal rates for P. clarkii, E. sinensis, and C. quadrinatus were 6.1 %, 5.1 %, and 1.5 % per day, while no steady new hemocyte production was found in S. paramamosain within six days. These data give a general picture of the similarities and differences of circulating hemocytes in decapods and provide a base for an in-depth study of their immune system.
Collapse
Affiliation(s)
- Yiyi Su
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Xiamen Ocean Vocational College, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| |
Collapse
|
2
|
Kladchenko ES, Chelebieva ES, Podolskaya MS, Khurchak AI, Andreyeva AY, Malakhova TV. Shift in hemocyte immune parameters of marine bivalve Mytilus galloprovincialis (Lamarck, 1819) after exposure to methane. MARINE POLLUTION BULLETIN 2024; 201:116174. [PMID: 38382322 DOI: 10.1016/j.marpolbul.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Methane are widely used in industry as an emerge source may be released significantly higher aquatic ecosystems due to gas seepages. In this study, short-term (90 min) methane effects on bivalve hemocytes were investigated using flow cytometry. Hemocyte parameters including hemolymph cellular composition, phagocytosis activity, mitochondrial membrane potential and reactive oxygen species (ROS) content were evaluated in the mussel Mytilus galloprovincialis (Lamarck, 1819) exposed to hypoxia (control group), pure methane and industrial methane (industrial hydrocarbon mixture). Comparison of biomarkers showed that the mussel was more sensitive to methane than to low oxygen concentration, supporting the effects of methane on the mussel's immune system. After exposure to pure and industrial methane, the number of granulocytes decreased dramatically and the levels of reactive oxygen species, mitochondrial membrane potential and phagocytosis capacity increased significantly. It was shown that the methane type-dependent effect was pronounced, with industrial methane leading to more pronounced changes.
Collapse
Affiliation(s)
- Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia.
| | - Elina S Chelebieva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| | - Maria S Podolskaya
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| | - Alena I Khurchak
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia; Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| | - Aleksandra Yu Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| | - Tatiana V Malakhova
- Department of Radiation and Chemical Biology, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky ave, 14, Moscow 119991, Russia
| |
Collapse
|
3
|
Farhadi A, Xue L, Zhao Q, Han F, Xu C, Chen H, Li E. Identification of key genes and molecular pathways associated with claw regeneration in mud crab (Scylla paramamosain). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101184. [PMID: 38154166 DOI: 10.1016/j.cbd.2023.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
The mud crab (Scylla paramamosain) possesses extensive regenerative abilities, enabling it to replace missing body parts, including claws, legs, and even eyes. Studying the genetic and molecular mechanisms underlying regenerative ability in diverse animal phyla has the potential to provide new insights into regenerative medicine in humans. In the present study, we performed mRNA sequencing to reveal the genetic mechanisms underlying the claw regeneration in mud crab. Several differentially expressed genes (DEGs) were expressed in biological pathways associated with cuticle synthase, collagen synthase, tissue regeneration, blastema formation, wound healing, cell cycle, cell division, and cell migration. The top GO enrichment terms were microtubule-based process, collagen trimer, cell cycle process, and extracellular matrix structural constituent. The most enriched KEGG pathways were ECM-receptor interaction and focal adhesion. The genes encoding key functional proteins, such as collagen alpha, cuticle protein, early cuticle protein, arthrodial cuticle protein, dentin sialophosphoprotein (DSPP), epidermal growth factor receptor (EGFR), kinesin family member C1 (KIFC1), and DNA replication licensing factor mcm2-like (MCM2) were the most significant and important DEGs suspected to participate in claw regeneration. The findings of this research offer a comprehensive and insightful understanding of the genetic and molecular mechanisms underlying claw regeneration in S. paramamosain. By elucidating the specific genes and molecular pathways implicated in this process, our study contributes significantly to the broader field of regenerative biology and offers potential avenues for further exploration in crustacean limb regeneration.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Laizhong Xue
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Mengal K, Kor G, Siino V, Buřič M, Kozák P, Levander F, Niksirat H. Quantification of proteomic profile changes in the hemolymph of crayfish during in vitro coagulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104760. [PMID: 37331675 DOI: 10.1016/j.dci.2023.104760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Hemolymph is the circulatory fluid that fills the body cavity of crustaceans, analogous to blood in vertebrates. Hemolymph coagulation, similar to blood clotting in vertebrates, plays a crucial role in wound healing and innate immune responses. Despite extensive studies on the clotting process in crustaceans, no comparative quantitative analysis of the protein composition of non-clotted and clotted hemolymph in any decapod has been reported. In this study, we used label-free protein quantification with high-resolution mass spectrometry to identify the proteomic profile of hemolymph in crayfish and quantify significant changes in protein abundances between non-clotted and clotted hemolymph. Our analysis identified a total of two-hundred and nineteen proteins in both hemolymph groups. Furthermore, we discussed the potential functions of the top most high and low-abundant proteins in hemolymph proteomic profile. The quantity of most of the proteins was not significantly changed during coagulation between non-clotted and clotted hemolymph, which may indicate that clotting proteins are likely pre-synthesized, allowing for a swift coagulation response to injury. Four proteins still showed abundance differences (p < 0.05, fold change>2), including C-type lectin domain-containing proteins, Laminin A chain, Tropomyosin, and Reverse transcriptase domain-containing proteins. While the first three proteins were down-regulated, the last one was up-regulated. The down-regulation of structural and cytoskeletal proteins may affect the process of hemocyte degranulation needed for coagulation, while the up-regulation of an immune-related protein might be attributed to the phagocytosis ability of viable hemocytes during coagulation.
Collapse
Affiliation(s)
- Kifayatullah Mengal
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Golara Kor
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Valentina Siino
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Fredrik Levander
- Lund University, Department of Immunotechnology, Medicon Village, House 406, 22387, Lund, Sweden; National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, 223 87, Sweden
| | - Hamid Niksirat
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|