1
|
Crow YJ, Casanova JL. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol 2024; 9:eadm8185. [PMID: 38968338 DOI: 10.1126/sciimmunol.adm8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR 1163, Paris, France
- University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Imagine Institute, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
2
|
Xiong Z, Cao J, Wang K, Yang Y, Hu Y, Nie J, Zeng Q, Hu Y, Zhu L, Li X, Wu H. Characterization and functional analysis of chicken CDK protein. Poult Sci 2024; 103:103833. [PMID: 38810563 PMCID: PMC11166876 DOI: 10.1016/j.psj.2024.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The family of cell cycle-dependent kinases (CDKs) serves as catalytic subunits within protein kinase complexes, playing a crucial role in cell cycle progression. While the function of CDK proteins in regulating mammalian innate immune responses and virus replication is well-documented, their role in chickens remains unclear. To address this, we cloned several chicken CDKs, specifically CDK6 through CDK10. We observed that CDK6 is widely expressed across various chicken tissues, with localization in the cytoplasm, nucleus, or both in DF-1 cells. In addition, we also found that multiple chicken CDKs negatively regulate IFN-β signaling induced by chicken MAVS or chicken STING by targeting different steps. Moreover, during infection with infectious bursal disease virus (IBDV), various chicken CDKs, except CDK10, were recruited and co-localized with viral protein VP1. Interestingly, overexpression of CDK6 in chickens significantly enhanced IBDV replication. Conversely, knocking down CDK6 led to a marked increase in IFN-β production, triggered by chMDA5. Furthermore, targeting endogenous CDK6 with RNA interference substantially reduced IBDV replication. These findings collectively suggest that chicken CDKs, particularly CDK6, act as suppressors of IFN-β production and play a facilitative role in IBDV replication.
Collapse
Affiliation(s)
- Zhixuan Xiong
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jingjing Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Ke Wang
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuling Yang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Camphor Engineering Research Center of NFGA, Jiangxi Province, Nanchang 330045, China
| | - Ying Hu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiangjiang Nie
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Zeng
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yu Hu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lina Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, 266237, China
| | - Huansheng Wu
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
4
|
Wang Q, Li B, Sun XN, Gan Z. Evolutionary and functional conservation of IRF7 in the Tibetan frog Nanorana parkeri. Mol Biol Rep 2024; 51:114. [PMID: 38227268 DOI: 10.1007/s11033-023-09067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The production of interferons (IFNs) is essential for the control of viral infections, and interferon regulatory factor 7 (IRF7) is considered as a vital regulator for the transcription of type I IFNs. Amphibians appear to possess a highly expanded type I IFN repertoire, consisting of intron-containing genes as observed in fish, and intronless genes as in other higher vertebrates. However, the knowledge on transcriptional regulatory mechanism of these two types of type I IFN genes is rather scarce in amphibians. METHODS AND RESULTS A IRF7 gene named as Np-IRF7 was identified in Tibetan frog (Nanorana parkeri), and bioinformatic analysis revealed that the predicted protein of Np-IRF7 contains several important structural features known in IRF7. Expression analysis showed that Np-IRF7 gene was widely expressed and rapidly induced by poly(I:C) in different organs/tissues. Interestingly, luciferase reporter assay revealed that intronless IFN promoters were more effectively activated than intron-containing IFN promoter in Np-IRF7-transfected cells. Moreover, the overexpression of Np-IRF7 could induce the expression of ISGs and suppress the replication of FV3 in A6 cells. CONCLUSION Np-IRF7 is indeed the ortholog of known IRF7, and IRF7 is structurally conserved in different lineages of vertebrates. Np-IRF7 played distinct roles in the activation of intron-containing and intronless type I IFN promoters, thus inducing the expression of interferon-stimulated antiviral effectors and providing a protection against ranavirus infection. The present research thus contributes to a better understanding of regulatory function of IRF7 in the IFN-mediated antiviral response of anuran amphibians.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Bo Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xin Na Sun
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic, Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
5
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
6
|
Ruiz VL, Robert J. The amphibian immune system. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220123. [PMID: 37305914 PMCID: PMC10258673 DOI: 10.1098/rstb.2022.0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, Xenopus laevis, and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying X. laevis tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of X. laevis including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Lopez Ruiz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|