1
|
Münster ND, Schmalbrock P, Bäumer T, Hommel B, Beste C, Münchau A, Frings C. Separating binding and retrieval of event files in older adults. Acta Psychol (Amst) 2024; 244:104190. [PMID: 38368782 DOI: 10.1016/j.actpsy.2024.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
In the literature on human action control, it is assumed that features of stimuli (S) and responses (R) are integrated into internal representations (so-called event files) that are involved in the execution of an action. Experimentally, the impact of this integration on action control is typically analyzed via S-R binding effects. Recent theorizing in the BRAC framework (Frings et al., 2020) suggests to disentangle the processes of S-R binding proper from S-R retrieval as two independent components contributing to S-R binding effects. Since the literature on age effects on S-R binding effects is scarce and does not provide information on whether the existing findings about the two processes can be generalized to older age groups, this is the first study addressing the effects of older age separately on S-R binding proper vs. S-R retrieval. In two established variants of S-R binding tasks (cumulative n = 262), we contrasted binding (by using a saliency manipulation at the time of binding proper) versus retrieval processes (by manipulating the onset of the distractor at the time of retrieval), replicating previous results in younger (18-30 years) and also in older healthy controls (50-70 years). We therefore found no evidence for age effects on S-R binding proper or S-R retrieval. We thus conclude that the processes contributing to S-R binding effects are - at least in the age groups analyzed in this study - robust and age-independent. STATEMENT OF SIGNIFICANCE: In human action control, binding proper and retrieval of features in stimulus-response episodes typically lead to so-called S-R binding effects. Against the background of recent theorizing, binding proper and retrieval should be studied independently. In this article, we ran a younger and an older age group and analyzed possible age-related differences in integration or retrieval. Both groups showed the expected pattern for binding and retrieval as expected from the literature.
Collapse
Affiliation(s)
- Nicolas D Münster
- Department of Psychology, Cognitive Psychology, University of Trier, Trier, Germany; Institute for Cognitive & Affective Neuroscience (ICAN), University of Trier, Trier, Germany.
| | - Philip Schmalbrock
- Department of Psychology, Cognitive Psychology, University of Trier, Trier, Germany; Institute for Cognitive & Affective Neuroscience (ICAN), University of Trier, Trier, Germany.
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.
| | - Bernhard Hommel
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, People's Republic of China.
| | - Christian Beste
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.
| | - Christian Frings
- Department of Psychology, Cognitive Psychology, University of Trier, Trier, Germany; Institute for Cognitive & Affective Neuroscience (ICAN), University of Trier, Trier, Germany.
| |
Collapse
|
2
|
Rawish T, Wendiggensen P, Friedrich J, Frings C, Münchau A, Beste C. Neurophysiological processes reflecting the effects of the immediate past during the dynamic management of actions. Neuroimage 2024; 288:120526. [PMID: 38280691 DOI: 10.1016/j.neuroimage.2024.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
In recent years, there has been many efforts to establish a comprehensive theoretical framework explaining the working mechanisms involved in perception-action integration. This framework stresses the importance of the immediate past on mechanisms supporting perception-action integration. The present study investigates the neurophysiological principles of dynamic perception-action bindings, particularly considering the influence of the immediate history on action control mechanisms. For this purpose, we conducted an established stimulus-response binding paradigm during EEG recording. The SR-task measures stimulus-response binding in terms of accuracy and reaction time differences depending on the degree of feature overlap between conditions. Alpha, beta and theta band activity in distinct time domains as well as associated brain regions were investigated applying time-frequency analyses, a beamforming approach as well as correlation analyses. We demonstrate, for the first time, interdependencies of neuronal processes relying on the immediate past. The reconfiguration of an action seems to overwrite immediately preceding processes. The analyses revealed modulations of theta (TBA), alpha (ABA) and beta band activity (BBA) in connection with fronto-temporal structures supporting the theoretical assumptions of the considered conceptual framework. The close interplay of attentional modulation by gating irrelevant information (ABA) and binding and retrieval processes (TBA) is reflected by the correlation of ABA in all pre-probe-intervals with post-probe TBA. Likewise, the role of BBA in maintaining the event file until retrieval is corroborated by BBA preceding the TBA-associated retrieval of perception-action codes. Following action execution, TBA shifted towards visual association cortices probably reflecting preparation for upcoming information, while ABA and BBA continue to reflect processes of attentional control and information selection for goal-directed behavior. The present work provides the first empirical support for concepts about the neurophysiological mechanisms of dynamic management of perception and action.
Collapse
Affiliation(s)
- Tina Rawish
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | | | - Julia Friedrich
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Frings
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany; Department of Psychology, Shandong Normal University, Jinan, PR China.
| |
Collapse
|
3
|
Graf K, Gustke A, Mösle M, Armann J, Schneider J, Schumm L, Roessner V, Beste C, Bluschke A. Preserved perception-action integration in adolescents after a COVID-19 infection. Sci Rep 2023; 13:13287. [PMID: 37587175 PMCID: PMC10432494 DOI: 10.1038/s41598-023-40534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Evidence is accumulating that the Coronavirus disease (COVID-19) can bring forth deficits in executive functioning via alterations in the dopaminergic system. Importantly, dopaminergic pathways have been shown to modulate how actions and perceptions are integrated within the brain. Such alterations in event file binding could thus underlie the cognitive deficits developing after a COVID-19 infection. We examined action-perception integration in a group of young people (11-19 years of age) that had been infected with COVID-19 before study participation (n = 34) and compared them to a group of uninfected healthy controls (n = 29) on the behavioral (i.e., task accuracy, reaction time) and neurophysiological (EEG) level using an established event file binding paradigm. Groups did not differ from each other regarding demographic variables or in reporting psychiatric symptoms. Overall, multiple lines of evidence (behavioral and neurophysiological) suggest that action-perception integration is preserved in adolescents who suffered from COVID-19 prior to study participation. Event file binding processes were intact in both groups on all levels. While cognitive impairments can occur following a COVID-19 infection, the study demonstrates that action-perception integration as one of the basic building blocks of cognition seems to be largely unaffected in adolescents with a rather mild course of the disease.
Collapse
Affiliation(s)
- Katharina Graf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- University Neuropsychology Center (UNC), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alena Gustke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- University Neuropsychology Center (UNC), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Mariella Mösle
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- University Neuropsychology Center (UNC), Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jakob Armann
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Josephine Schneider
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonie Schumm
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.
- University Neuropsychology Center (UNC), Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- University Neuropsychology Center (UNC), Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
Weissbach A, Moyé J, Takacs A, Verrel J, Chwolka F, Friedrich J, Paulus T, Zittel S, Bäumer T, Frings C, Pastötter B, Beste C, Münchau A. Perception-Action Integration Is Altered in Functional Movement Disorders. Mov Disord 2023; 38:1399-1409. [PMID: 37315159 DOI: 10.1002/mds.29458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Although functional neurological movement disorders (FMD) are characterized by motor symptoms, sensory processing has also been shown to be disturbed. However, how the integration of perception and motor processes, essential for the control of goal-directed behavior, is altered in patients with FMD is less clear. A detailed investigation of these processes is crucial to foster a better understanding of the pathophysiology of FMD and can systematically be achieved in the framework of the theory of event coding (TEC). OBJECTIVE The aim was to investigate perception-action integration processes on a behavioral and neurophysiological level in patients with FMD. METHODS A total of 21 patients and 21 controls were investigated with a TEC-related task, including concomitant electroencephalogram (EEG) recording. We focused on EEG correlates established to reflect perception-action integration processes. Temporal decomposition allowed to distinguish between EEG codes reflecting sensory (S-cluster), motor (R-cluster), and integrated sensory-motor processing (C-cluster). We also applied source localization analyses. RESULTS Behaviorally, patients revealed stronger binding between perception and action, as evidenced by difficulties in reconfiguring previously established stimulus-response associations. Such hyperbinding was paralleled by a modulation of neuronal activity clusters, including reduced C-cluster modulations of the inferior parietal cortex and altered R-cluster modulations in the inferior frontal gyrus. Correlations of these modulations with symptom severity were also evident. CONCLUSIONS Our study shows that FMD is characterized by altered integration of sensory information with motor processes. Relations between clinical severity and both behavioral performance and neurophysiological abnormalities indicate that perception-action integration processes are central and a promising concept for the understanding of FMD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anne Weissbach
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Josephine Moyé
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Fabian Chwolka
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Julia Friedrich
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Theresa Paulus
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christian Frings
- Department of Cognitive Psychology, Trier University Trier, Trier, Germany
| | - Bernhard Pastötter
- Department of Cognitive Psychology, Trier University Trier, Trier, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Towards a systematization of brain oscillatory activity in actions. Commun Biol 2023; 6:137. [PMID: 36732548 PMCID: PMC9894929 DOI: 10.1038/s42003-023-04531-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Information processing in the brain is governed by oscillatory activity. Activity oscillations in specific frequency bands (theta, alpha, beta and gamma) have been associated with various cognitive functions. A drawback of this is that the plethora of findings led to considerable uncertainty as to the functional relevance of activity in different frequency bands and their interrelation. Here, we use a novel cognitive-science theoretical framework to better understand and conceptually harmonize neurophysiological research on human action control. We outline how this validated starting point can systematize and probably reframe the functional relevance of oscillatory activity relevant for action control and beyond.
Collapse
|
6
|
Yu S, Stock AK, Münchau A, Frings C, Beste C. Neurophysiological principles of inhibitory control processes during cognitive flexibility. Cereb Cortex 2023:6969136. [PMID: 36610732 DOI: 10.1093/cercor/bhac532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
Inhibitory control plays an indispensable role in cognitive flexibility. Nevertheless, the neurophysiological principles underlying this are incompletely understood. This owes to the fact that the representational dynamics, as coded in oscillatory neural activity of different frequency bands has not been considered until now-despite being of conceptual relevance. Moreover, it is unclear in how far distinct functional neuroanatomical regions are concomitantly involved in the processing of representational dynamics. We examine these questions using a combination of EEG methods. We show that theta-band activity plays an essential role for inhibitory control processes during cognitive flexibility across informational aspects coded in distinct fractions of the neurophysiological signal. It is shown that posterior parietal structures and the inferior parietal cortex seem to be the most important cortical region for inhibitory control processes during cognitive flexibility. Theta-band activity plays an essential role in processes of retrieving the previously inhibited representations related to the current task during cognitive flexibility. The representational content relevant for inhibitory processes during cognitive flexibility is coded in the theta frequency band. We outline how the observed neural mechanisms inform recent overarching cognitive frameworks on how flexible action control is accomplished.
Collapse
Affiliation(s)
- Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Sachsen 01187, Germany
| |
Collapse
|
7
|
Gholamipourbarogh N, Ghin F, Mückschel M, Frings C, Stock A, Beste C. Evidence for independent representational contents in inhibitory control subprocesses associated with frontoparietal cortices. Hum Brain Mapp 2022; 44:1046-1061. [PMID: 36314869 PMCID: PMC9875938 DOI: 10.1002/hbm.26135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022] Open
Abstract
Inhibitory control processes have intensively been studied in cognitive science for the past decades. Even though the neural dynamics underlying these processes are increasingly better understood, a critical open question is how the representational dynamics of the inhibitory control processes are modulated when engaging in response inhibition in a relatively automatic or a controlled mode. Against the background of an overarching theory of perception-action integration, we combine temporal and spatial EEG signal decomposition methods with multivariate pattern analysis and source localization to obtain fine-grained insights into the neural dynamics of the representational content of response inhibition. For this purpose, we used a sample of N = 40 healthy adult participants. The behavioural data suggest that response inhibition was better in a more controlled than a more automated response execution mode. Regarding neural dynamics, effects of response inhibition modes relied on a concomitant coding of stimulus-related information and rules of how stimulus information is related to the appropriate motor programme. Crucially, these fractions of information, which are encoded at the same time in the neurophysiological signal, are based on two independent spatial neurophysiological activity patterns, also showing differences in the temporal stability of the representational content. Source localizations revealed that the precuneus and inferior parietal cortex regions are more relevant than prefrontal areas for the representation of stimulus-response selection codes. We provide a blueprint how a concatenation of EEG signal analysis methods, capturing distinct aspects of neural dynamics, can be connected to cognitive science theory on the importance of representations in action control.
Collapse
Affiliation(s)
- Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| | | | - Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany,University Neuropsychology Center, Faculty of MedicineTU DresdenDresdenGermany
| |
Collapse
|
8
|
Eggert E, Takacs A, Münchau A, Beste C. On the Role of Memory Representations in Action Control: Neurophysiological Decoding Reveals the Reactivation of Integrated Stimulus-Response Feature Representations. J Cogn Neurosci 2022; 34:1246-1258. [PMID: 35552449 DOI: 10.1162/jocn_a_01861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Efficient response selection is essential to flexible, goal-directed behavior. Prominent theoretical frameworks such as the Theory of Event Coding and Binding and Retrieval in Action Control have provided insights regarding the dynamics of perception-action integration processes. According to Theory of Event Coding and Binding and Retrieval in Action Control, encoded representations of stimulus-response bindings influence later retrieval processes of these bindings. However, this concept still lacks conclusive empirical evidence. In the current study, we applied representational decoding to EEG data. On the behavioral level, the findings replicated binding effects that have been established in previous studies: The task performance was impaired when an event file had to be reconfigured. The EEG-decoding results showed that retrieval processes of stimulus-response bindings could be decoded using the representational content developed after the initial establishment of these stimulus-response bindings. We showed that stimulus-related properties became immediately reactivated when re-encountering the respective stimulus-response association. These reactivations were temporally stable. In contrast, representations of stimulus-response mappings revealed a transient pattern of activity and could not successfully be decoded directly after stimulus-response binding. Information detailing the bindings between stimuli and responses were also retrieved, but only after having been loaded into a memory system. The current study supports the notion that stimulus-response integration and memory processes are intertwined at multiple levels.
Collapse
Affiliation(s)
| | | | | | - Christian Beste
- TU, Dresden, Germany
- Shandong Normal University, Jinan, China
| |
Collapse
|