1
|
Fu Z, Sui J, Iraji A, Liu J, Calhoun VD. Cognitive and psychiatric relevance of dynamic functional connectivity states in a large (N > 10,000) children population. Mol Psychiatry 2025; 30:402-413. [PMID: 39085394 PMCID: PMC11746149 DOI: 10.1038/s41380-024-02683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Children's brains dynamically adapt to the stimuli from the internal state and the external environment, allowing for changes in cognitive and mental behavior. In this work, we performed a large-scale analysis of dynamic functional connectivity (DFC) in children aged 9~11 years, investigating how brain dynamics relate to cognitive performance and mental health at an early age. A hybrid independent component analysis framework was applied to the Adolescent Brain Cognitive Development (ABCD) data containing 10,988 children. We combined a sliding-window approach with k-means clustering to identify five brain states with distinct DFC patterns. Interestingly, the occurrence of a strongly connected state with the most within-network synchrony and the anticorrelations between networks, especially between the sensory networks and between the cerebellum and other networks, was negatively correlated with cognitive performance and positively correlated with dimensional psychopathology in children. Meanwhile, opposite relationships were observed for a DFC state showing integration of sensory networks and antagonism between default-mode and sensorimotor networks but weak segregation of the cerebellum. The mediation analysis further showed that attention problems mediated the effect of DFC states on cognitive performance. This investigation unveils the neurological underpinnings of DFC states, which suggests that tracking the transient dynamic connectivity may help to characterize cognitive and mental problems in children and guide people to provide early intervention to buffer adverse influences.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
- Department of Computer Science, Georgia State University, Atlanta, GA, USA.
| | - Jing Sui
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Papke V, Wiglesworth A, Carosella KA, Başgöze Z, Green AE, Fiecas M, Cullen KR, Klimes-Dougan B. Sexual Minority Stress: Preliminary Evidence of Accelerated Pubertal Development in Early Adolescence. J Adolesc 2025. [PMID: 39834255 DOI: 10.1002/jad.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Societal stressors place a tremendous burden on individuals who identify with a sexual minority identity. While minority stress experienced by racial/ethnic minority groups has been linked to accelerated aging, this link has yet to be examined among sexual minority youth. This study explores whether sexual minority youth who indicate experiencing stress at home or school (Minority Stress) due to their identity show evidence of accelerated aging (pubertal status or tempo) compared to those who do not report such experiences (No Minority Stress). METHODS Data are from the Adolescent Brain Cognitive Development (ABCD) Study. Participants were approximately 9-10 years old at baseline, 10-11 years old at Time 1, and 11-12 years old at Time 2. Measures included child-reports of sexual minority identity and stressors, and parent-reports of adolescent pubertal development. RESULTS Among 432 included participants who identified with a sexual minority identity, 83.6% were assigned female at birth and 24.8% were in the Minority Stress group. There were consistent results showing that sexual minority youth in the Minority Stress group showed accelerated pubertal status over time compared to those in the No Minority Stress group. Pubertal tempo (i.e., slope) was only accelerated for those who first identified as sexual minority at Time 2. CONCLUSION Our findings underscore that minority stress experienced by sexual minority youth may be linked to differences in pubertal development among these youth. The developmental and clinical implications of these patterns present critical lines for future research concerned with the wellbeing of sexual minority youth.
Collapse
Affiliation(s)
- Victoria Papke
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrea Wiglesworth
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Zeynep Başgöze
- Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aurora E Green
- Department of Psychology, University of Maine, Orono, Maine, USA
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kathryn R Cullen
- Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
3
|
Thijssen S, Xerxa Y, Norbom LB, Cima M, Tiemeier H, Tamnes CK, Muetzel RL. Early childhood family threat and longitudinal amygdala-mPFC circuit development: Examining cortical thickness and gray matter-white matter contrast. Dev Cogn Neurosci 2024; 70:101462. [PMID: 39418759 PMCID: PMC11532282 DOI: 10.1016/j.dcn.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Early threat-associated cortical thinning may be interpreted as accelerated cortical development. However, non-adaptive processes may show similar macrostructural changes. Examining cortical thickness (CT) together with grey/white-matter contrast (GWC), a proxy for intracortical myelination, may enhance the interpretation of CT findings. In this prospective study, we examined associations between early life family-related threat (harsh parenting, family conflict, and neighborhood safety) and CT and GWC development from late childhood to middle adolescence. MRI was acquired from 4200 children (2069 boys) from the Generation R study at ages 8, 10 and 14 years (in total 6114 scans), of whom 1697 children had >1 scans. Linear mixed effect models were used to examine family factor-by-age interactions on amygdala volume, caudal and rostral anterior cingulate (ACC) and medial orbitofrontal cortex (mOFC) CT and GWC. A neighborhood safety-by-age-interaction was found for rostral ACC GWC, suggesting less developmental change in children from unsafe neighborhoods. Moreover, after more stringent correction for motion, family conflict was associated with greater developmental change in CT but less developmental change in GWC. Results suggest that early threat may blunt ACC GWC development. Our results, therefore, do not provide evidence for accelerated threat-associated structural development of the amygdala-mPFC circuit between ages 8-14 years.
Collapse
Affiliation(s)
- Sandra Thijssen
- Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Yllza Xerxa
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Maaike Cima
- Behavioral Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Christian K Tamnes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Elton A, Lewis B, Nixon SJ. The effects of adverse life events on brain development in the ABCD study®: a propensity-weighted analysis. Mol Psychiatry 2024:10.1038/s41380-024-02850-9. [PMID: 39578521 DOI: 10.1038/s41380-024-02850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Longitudinal studies of the effects of adversity on human brain development are complicated by the association of stressful events with confounding variables. To counter this bias, we apply a propensity-weighted analysis of the first two years of The Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® data, employing a machine learning analysis weighted by individuals' propensity to experience adversity. Data included 338 resting-state functional connections from 7190 youth (46% female), divided into a training group (80%) and an independent testing group (20%). Propensity scores were computed using 390 variables to balance across two-year adverse life event exposures. Using elastic net regularization with and without inverse propensity weighting, we developed linear models in which changes in functional connectivity of brain connections during the two-year period served as predictors of the number of adverse events experienced during that same period. Haufe's method was applied to forward-transform the backward prediction models. We also tested whether brain changes associated with adverse events correlated with concomitant changes in internalizing or externalizing behaviors or to academic achievement. In the propensity-weighted analysis, brain development significantly predicted the number of adverse events experienced during that period in both the training group (ρ = 0.14, p < 0.001) and the independent testing group (ρ = 0.10, p < 0.001). The predictor indicated a general pattern of decreased functional connectivity between large-scale networks and subcortical brain regions, particularly for cingulo-opercular and sensorimotor networks. These network-to-subcortical functional connectivity decreases inversely associated with the development of internalizing symptoms, suggesting adverse events promoted adaptive brain changes that may buffer against stress-related psychopathology. However, these same functional connections were also associated with poorer grades at the two-year follow-up. Although cortical-subcortical brain developmental responses to adversity potentially shield against stress-induced mood and anxiety disorders, they may be detrimental to other domains such as academic success.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA.
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA.
| | - Ben Lewis
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA
| | - Sara Jo Nixon
- Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA
- Center for Addiction Research & Education, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
5
|
Luciana M, Barch D, Herting MM. Adolescent brain cognitive development study: Longitudinal methods, developmental findings, and associations with environmental risk factors. Dev Cogn Neurosci 2023; 64:101311. [PMID: 37827934 PMCID: PMC10757308 DOI: 10.1016/j.dcn.2023.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Affiliation(s)
| | - Deanna Barch
- Department of Psychological and Brain Sciences, Washington University of St. Louis, USA
| | - Megan M Herting
- Departments of Population and Public Health Sciences and Pediatrics, Keck School of Medicine of USC, University of Southern California, USA
| |
Collapse
|
6
|
Li R, Lopez DA, Gupta M, Palermo TM. Pubertal development and pain incidence and characteristics in children: a 1-year prospective cohort study of a national sample. Pain 2023; 164:2725-2736. [PMID: 37343155 DOI: 10.1097/j.pain.0000000000002969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
ABSTRACT Sex differences in pain become apparent during puberty. However, the influence of key pubertal characteristics and pubertal hormones on pain is largely unknown. We examined the prospective associations between self-reported and hormone-indicated pubertal characteristics and pain incidence and severity in 10- to 11-year-old pain-free youth in the Adolescent Brain Cognitive Development (ABCD) Study over 1 year. Puberty was measured at baseline and follow-up with self-report (Pubertal Development Scale [PDS]) and hormonal assessment (salivary dehydroepiandrosterone [DHEA], testosterone, and estradiol). Pain status (yes/no), intensity, and interference (0-10 numerical rating scale) in the past month were self-reported at follow-up. Pubertal maturity, progression, and asynchrony were examined in relation to pain onset and severity through confounder-adjusted generalized estimating equations modified Poisson and linear mixed regression models. Among 6631 pain-free youth at baseline, 1-year incident pain was 30.7%. In both sexes, higher PDS scores were associated with greater risk of pain onset (relative risk [RR] = 1.10 to 1.27, P s < 0.01). In boys, higher PDS item variance was associated with greater pain incidence (RR = 1.11, 95% CI, 1.03-1.20) and interference (beta = 0.40, 95% CI, 0.03-0.76); higher PDS overall and gonadal scores were associated with higher pain intensity ( P s < 0.05). Associations with hormones were seen in boys only, with each 10-fold higher testosterone levels associated with a 40% lower risk of pain incidence (95% CI, -55% to -22%) and 1.30-point lower (95% CI, -2.12 to -0.48) pain intensity, and higher DHEA levels were associated with lower pain intensity ( P = 0.020). Relationships between pubertal development and pain in peripubertal adolescents are sex specific and puberty measurement specific and warrant further investigation.
Collapse
Affiliation(s)
- Rui Li
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, United States
| | - Daniel A Lopez
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Meenal Gupta
- Division of Endocrinology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Tonya M Palermo
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
7
|
Ladouceur CD, Henry T, Ojha A, Shirtcliff EA, Silk JS. Fronto-amygdala resting state functional connectivity is associated with anxiety symptoms among adolescent girls more advanced in pubertal maturation. Dev Cogn Neurosci 2023; 60:101236. [PMID: 36996571 PMCID: PMC10063408 DOI: 10.1016/j.dcn.2023.101236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Early adolescence, with the onset of puberty, is an important period when sex differences in anxiety emerge, with girls reporting significantly higher anxiety symptoms than boys. This study examined the role of puberty on fronto-amygdala functional connectivity and risk of anxiety symptoms in 70 girls (age 11-13) who completed a resting state fMRI scan, self-report measures of anxiety symptoms and pubertal status, and provided basal testosterone levels (64 girls). Resting state fMRI data were preprocessed using fMRIPrep and connectivity indices were extracted from ventromedial prefrontal cortex (vmPFC) and amygdala regions-of-interest. We tested moderated mediation models and hypothesized that vmPFC-amygdala would mediate the relation between three indices of puberty (testosterone and adrenarcheal/gonadarcheal development) and anxiety, with puberty moderating the relation between connectivity and anxiety. Results showed a significant moderation effect of testosterone and adrenarcheal development in the right amygdala and a rostral/dorsal area of the vmPFC and of gonadarcheal development in the left amygdala and a medial area of the vmPFC on anxiety symptoms. Simple slope analyses showed that vmPFC-amygdala connectivity was negatively associated with anxiety only in girls more advanced in puberty suggesting that sensitivity to the effects of puberty on fronto-amygdala function could contribute to risk for anxiety disorders among adolescent girls.
Collapse
|
8
|
Demidenko MI, Kelly DP, Hardi FA, Ip KI, Lee S, Becker H, Hong S, Thijssen S, Luciana M, Keating DP. Mediating effect of pubertal stages on the family environment and neurodevelopment: An open-data replication and multiverse analysis of an ABCD Study ®. NEUROIMAGE. REPORTS 2022; 2:100133. [PMID: 36561641 PMCID: PMC9770593 DOI: 10.1016/j.ynirp.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Increasing evidence demonstrates that environmental factors meaningfully impact the development of the brain (Hyde et al., 2020; McEwen and Akil, 2020). Recent work from the Adolescent Brain Cognitive Development (ABCD) Study® suggests that puberty may indirectly account for some association between the family environment and brain structure and function (Thijssen et al., 2020). However, a limited number of large studies have evaluated what, how, and why environmental factors impact neurodevelopment. When these topics are investigated, there is typically inconsistent operationalization of variables between studies which may be measuring different aspects of the environment and thus different associations in the analytic models. Multiverse analyses (Steegen et al., 2016) are an efficacious technique for investigating the effect of different operationalizations of the same construct on underlying interpretations. While one of the assets of Thijssen et al. (2020) was its large sample from the ABCD data, the authors used an early release that contained 38% of the full ABCD sample. Then, the analyses used several 'researcher degrees of freedom' (Gelman and Loken, 2014) to operationalize key independent, mediating and dependent variables, including but not limited to, the use of a latent factor of preadolescents' environment comprised of different subfactors, such as parental monitoring and child-reported family conflict. While latent factors can improve reliability of constructs, the nuances of each subfactor and measure that comprise the environment may be lost, making the latent factors difficult to interpret in the context of individual differences. This study extends the work of Thijssen et al. (2020) by evaluating the extent to which the analytic choices in their study affected their conclusions. In Aim 1, using the same variables and models, we replicate findings from the original study using the full sample in Release 3.0. Then, in Aim 2, using a multiverse analysis we extend findings by considering nine alternative operationalizations of family environment, three of puberty, and five of brain measures (total of 135 models) to evaluate the impact on conclusions from Aim 1. In these results, 90% of the directions of effects and 60% of the p-values (e.g. p > .05 and p < .05) across effects were comparable between the two studies. However, raters agreed that only 60% of the effects had replicated. Across the multiverse analyses, there was a degree of variability in beta estimates across the environmental variables, and lack of consensus between parent reported and child reported pubertal development for the indirect effects. This study demonstrates the challenge in defining which effects replicate, the nuance across environmental variables in the ABCD data, and the lack of consensus across parent and child reported puberty scales in youth.
Collapse
Affiliation(s)
| | - Dominic P. Kelly
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Felicia A. Hardi
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Ka I. Ip
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Sujin Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Hannah Becker
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Sunghyun Hong
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Sandra Thijssen
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Monica Luciana
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel P. Keating
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|