1
|
Allan CY, Sanislav O, Fisher PR. Polycystin-2 Mediated Calcium Signalling in the Dictyostelium Model for Autosomal Dominant Polycystic Kidney Disease. Cells 2024; 13:610. [PMID: 38607049 PMCID: PMC11012017 DOI: 10.3390/cells13070610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) occurs when the proteins Polycystin-1 (PC1, PKD1) and Polycystin-2 (PC2, PKD2) contain mutations. PC1 is a large membrane receptor that can interact and form a complex with the calcium-permeable cation channel PC2. This complex localizes to the plasma membrane, primary cilia and ER. Dysregulated calcium signalling and consequential alterations in downstream signalling pathways in ADPKD are linked to cyst formation and expansion; however, it is not completely understood how PC1 and PC2 regulate calcium signalling. We have studied Polycystin-2 mediated calcium signalling in the model organism Dictyostelium discoideum by overexpressing and knocking down the expression of the endogenous Polycystin-2 homologue, Polycystin-2. Chemoattractant-stimulated cytosolic calcium response magnitudes increased and decreased in overexpression and knockdown strains, respectively, and analysis of the response kinetics indicates that Polycystin-2 is a significant contributor to the control of Ca2+ responses. Furthermore, basal cytosolic calcium levels were reduced in Polycystin-2 knockdown transformants. These alterations in Ca2+ signalling also impacted other downstream Ca2+-sensitive processes including growth rates, endocytosis, stalk cell differentiation and spore viability, indicating that Dictyostelium is a useful model to study Polycystin-2 mediated calcium signalling.
Collapse
Affiliation(s)
| | | | - Paul R. Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia; (C.Y.A.)
| |
Collapse
|
2
|
Pellegrini H, Sharpe EH, Liu G, Nishiuchi E, Doerr N, Kipp KR, Chin T, Schimmel MF, Weimbs T. Cleavage fragments of the C-terminal tail of polycystin-1 are regulated by oxidative stress and induce mitochondrial dysfunction. J Biol Chem 2023; 299:105158. [PMID: 37579949 PMCID: PMC10502374 DOI: 10.1016/j.jbc.2023.105158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.
Collapse
Affiliation(s)
- Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Elizabeth H Sharpe
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Guangyi Liu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA; Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Eiko Nishiuchi
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Nicholas Doerr
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Kevin R Kipp
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Tiffany Chin
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Margaret F Schimmel
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
3
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
4
|
Hansen JN, Kaiser F, Leyendecker P, Stüven B, Krause J, Derakhshandeh F, Irfan J, Sroka TJ, Preval KM, Desai PB, Kraut M, Theis H, Drews A, De‐Domenico E, Händler K, Pazour GJ, Henderson DJP, Mick DU, Wachten D. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep 2022; 23:e54315. [PMID: 35695071 PMCID: PMC9346484 DOI: 10.15252/embr.202154315] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | - Fabian Kaiser
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | - Birthe Stüven
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | | | | | - Tommy J Sroka
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Kenley M Preval
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Paurav B Desai
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Michael Kraut
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Heidi Theis
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Anna‐Dorothee Drews
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Elena De‐Domenico
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Kristian Händler
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Gregory J Pazour
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | | | - David U Mick
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
5
|
Naert T, Çiçek Ö, Ogar P, Bürgi M, Shaidani NI, Kaminski MM, Xu Y, Grand K, Vujanovic M, Prata D, Hildebrandt F, Brox T, Ronneberger O, Voigt FF, Helmchen F, Loffing J, Horb ME, Willsey HR, Lienkamp SS. Deep learning is widely applicable to phenotyping embryonic development and disease. Development 2021; 148:273338. [PMID: 34739029 PMCID: PMC8602947 DOI: 10.1242/dev.199664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Genome editing simplifies the generation of new animal models for congenital disorders. However, the detailed and unbiased phenotypic assessment of altered embryonic development remains a challenge. Here, we explore how deep learning (U-Net) can automate segmentation tasks in various imaging modalities, and we quantify phenotypes of altered renal, neural and craniofacial development in Xenopus embryos in comparison with normal variability. We demonstrate the utility of this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). We highlight how in toto light-sheet microscopy facilitates accurate reconstruction of brain and craniofacial structures within X. tropicalis embryos upon dyrk1a and six1 loss of function or treatment with retinoic acid inhibitors. These tools increase the sensitivity and throughput of evaluating developmental malformations caused by chemical or genetic disruption. Furthermore, we provide a library of pre-trained networks and detailed instructions for applying deep learning to the reader's own datasets. We demonstrate the versatility, precision and scalability of deep neural network phenotyping on embryonic disease models. By combining light-sheet microscopy and deep learning, we provide a framework for higher-throughput characterization of embryonic model organisms. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland
| | - Özgün Çiçek
- Department of Computer Science, Albert-Ludwigs-University, Freiburg 79100, Germany
| | - Paulina Ogar
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland
| | - Max Bürgi
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland
| | - Nikko-Ideen Shaidani
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Michael M Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 10115, Germany.,Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Yuxiao Xu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Kelli Grand
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland
| | - Marko Vujanovic
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland
| | - Daniel Prata
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115,USA
| | - Thomas Brox
- Department of Computer Science, Albert-Ludwigs-University, Freiburg 79100, Germany
| | - Olaf Ronneberger
- Department of Computer Science, Albert-Ludwigs-University, Freiburg 79100, Germany.,BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany.,DeepMind, London WC2H 8AG , UK
| | - Fabian F Voigt
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich, Zurich 8057, Switzerland
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland; Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), Zurich 8057, Switzerland
| |
Collapse
|
6
|
Ppia is the most stable housekeeping gene for qRT-PCR normalization in kidneys of three Pkd1-deficient mouse models. Sci Rep 2021; 11:19798. [PMID: 34611276 PMCID: PMC8492864 DOI: 10.1038/s41598-021-99366-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited renal disorder, characterized by renal cyst development leading to end-stage renal disease. Although the appropriate choice of suitable reference is critical for quantitative RNA analysis, no comparison of frequently used “housekeeping” genes is available. Here, we determined the validity of 7 candidate housekeeping genes (Actb, Actg1, B2m, Gapdh, Hprt, Pgam1 and Ppia) in kidney tissues from mouse models orthologous to ADPKD, including a cystic mice (CY) 10–12 weeks old (Pkd1flox/flox:Nestincre/Pkd1flox/−:Nestincre, n = 10) and non-cystic (NC) controls (Pkd1flox/flox/Pkd1flox/-, n = 10), Pkd1-haploinsufficient (HT) mice (Pkd1+/−, n = 6) and wild-type (WT) controls (Pkd1+/+, n = 6) and a severely cystic (SC) mice 15 days old (Pkd1V/V, n = 7) and their controls (CO, n = 5). Gene expression data were analyzed using six distinct statistical softwares. The estimation of the ideal number of genes suggested the use of Ppia alone as sufficient, although not ideal, to analyze groups altogether. Actb, Hprt and Ppia expression profiles were correlated in all samples. Ppia was identified as the most stable housekeeping gene, while Gapdh was the least stable for all kidney samples. Stat3 expression level was consistent with upregulation in SC compared to CO when normalized by Ppia expression. In conclusion, present findings identified Ppia as the best housekeeping gene for CY + NC and SC + CO groups, while Hprt was the best for the HT + WT group.
Collapse
|
7
|
Patel DM, Dahl NK. Examining the Role of Novel CKD Therapies for the ADPKD Patient. KIDNEY360 2021; 2:1036-1041. [PMID: 35373079 PMCID: PMC8791369 DOI: 10.34067/kid.0007422020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022]
|
8
|
Vien TN, Ng LCT, Smith JM, Dong K, Krappitz M, Gainullin VG, Fedeles S, Harris PC, Somlo S, DeCaen PG. Disrupting polycystin-2 EF hand Ca 2+ affinity does not alter channel function or contribute to polycystic kidney disease. J Cell Sci 2020; 133:jcs255562. [PMID: 33199522 PMCID: PMC7774883 DOI: 10.1242/jcs.255562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022] Open
Abstract
Approximately 15% of autosomal dominant polycystic kidney disease (ADPKD) is caused by variants in PKD2PKD2 encodes polycystin-2, which forms an ion channel in primary cilia and endoplasmic reticulum (ER) membranes of renal collecting duct cells. Elevated internal Ca2+ modulates polycystin-2 voltage-dependent gating and subsequent desensitization - two biophysical regulatory mechanisms that control its function at physiological membrane potentials. Here, we refute the hypothesis that Ca2+ occupancy of the polycystin-2 intracellular EF hand is responsible for these forms of channel regulation, and, if disrupted, results in ADPKD. We identify and introduce mutations that attenuate Ca2+-EF hand affinity but find channel function is unaltered in the primary cilia and ER membranes. We generated two new mouse strains that harbor distinct mutations that abolish Ca2+-EF hand association but do not result in a PKD phenotype. Our findings suggest that additional Ca2+-binding sites within polycystin-2 or Ca2+-dependent modifiers are responsible for regulating channel activity.
Collapse
Affiliation(s)
- Thuy N Vien
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leo C T Ng
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica M Smith
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Ke Dong
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Matteus Krappitz
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Sorin Fedeles
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
9
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
10
|
Rogers KA, Moreno SE, Smith LA, Husson H, Bukanov NO, Ledbetter SR, Budman Y, Lu Y, Wang B, Ibraghimov-Beskrovnaya O, Natoli TA. Differences in the timing and magnitude of Pkd1 gene deletion determine the severity of polycystic kidney disease in an orthologous mouse model of ADPKD. Physiol Rep 2016; 4:4/12/e12846. [PMID: 27356569 PMCID: PMC4926022 DOI: 10.14814/phy2.12846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Development of a disease‐modifying therapy to treat autosomal dominant polycystic kidney disease (ADPKD) requires well‐characterized preclinical models that accurately reflect the pathology and biochemical changes associated with the disease. Using a Pkd1 conditional knockout mouse, we demonstrate that subtly altering the timing and extent of Pkd1 deletion can have a significant impact on the origin and severity of kidney cyst formation. Pkd1 deletion on postnatal day 1 or 2 results in cysts arising from both the cortical and medullary regions, whereas deletion on postnatal days 3–8 results in primarily medullary cyst formation. Altering the extent of Pkd1 deletion by modulating the tamoxifen dose produces dose‐dependent changes in the severity, but not origin, of cystogenesis. Limited Pkd1 deletion produces progressive kidney cystogenesis, accompanied by interstitial fibrosis and loss of kidney function. Cyst growth occurs in two phases: an early, rapid growth phase, followed by a later, slow growth period. Analysis of biochemical pathway changes in cystic kidneys reveals dysregulation of the cell cycle, increased proliferation and apoptosis, activation of Mek‐Erk, Akt‐mTOR, and Wnt‐β‐catenin signaling pathways, and altered glycosphingolipid metabolism that resemble the biochemical changes occurring in human ADPKD kidneys. These pathways are normally active in neonatal mouse kidneys until repressed around 3 weeks of age; however, they remain active following Pkd1 deletion. Together, this work describes the key parameters to accurately model the pathological and biochemical changes associated with ADPKD in a conditional mouse model.
Collapse
Affiliation(s)
- Kelly A Rogers
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Sarah E Moreno
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Laurie A Smith
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Hervé Husson
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Nikolay O Bukanov
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Steven R Ledbetter
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Yeva Budman
- Department of Analytical Research and Development, Sanofi Corporation, Waltham, Massachusetts
| | - Yuefeng Lu
- Department of Biostatistics and Programming, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| | - Bing Wang
- Department of Analytical Research and Development, Sanofi Corporation, Waltham, Massachusetts
| | | | - Thomas A Natoli
- Department of Rare Renal Disease Research, Sanofi-Genzyme R&D Center, Framingham, Massachusetts
| |
Collapse
|