1
|
Duddu S, Katakia YT, Chakrabarti R, Sharma P, Shukla PC. New epigenome players in the regulation of PCSK9-H3K4me3 and H3K9ac alterations by statin in hypercholesterolemia. J Lipid Res 2025; 66:100699. [PMID: 39566851 PMCID: PMC11699316 DOI: 10.1016/j.jlr.2024.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Statins are the most effective drugs used worldwide to lower the serum LDL-C by inhibiting the rate-limiting step, HMG-CoA reductase, in cholesterol biosynthesis. Despite its prevalent use, statins are known to increase proprotein convertase subtilisin/kexin type 9 (PCSK9) expression, hindering its efficiency. However, the underlying mechanisms remain elusive. In this study, we have unraveled the pleiotropic effects of statins on hypercholesterolemia via epigenetic regulation of PCSK9. We observed that atorvastatin (ATS) increases the fold enrichment of H3K4me3 at the promoter of PCSK9 by elevating the expression of the SET1/COMPASS family of proteins like SET1b and MLL1 in HepG2. In addition, ATS also acetylates H3K9 by increasing the expression of acetyltransferases like CBP and PCAF. Similarly, in mice fed a high-fat diet, ATS showed increased levels of H3K4me3 and H3K9ac in the liver. Furthermore, a pharmacological intervention that inhibits the H3K4me3 and H3K9ac enrichment resulted in the reversal of statin-induced upregulation of PCSK9. Combining statin and OICR-9429 or resveratrol improved the overall uptake of LDL by hepatocytes. Together, these findings suggest that statin induces the colocalization of H3K4me3 and H3K9ac to transcribe PCSK9 actively and that inhibiting these marks reduces PCSK9 expression and ultimately increases hepatocyte LDL uptake. Our study unveils a previously unknown epigenetic mechanism of PCSK9 regulation that may open new avenues to increase statin efficacy in patients and provide a potential therapeutic solution.
Collapse
Affiliation(s)
- Sushmitha Duddu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Yash T Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Rituparna Chakrabarti
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pooja Sharma
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India; Department of Human Medicine, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
2
|
Grunwald SA, Popp O, Haafke S, Jedraszczak N, Grieben U, Saar K, Patone G, Kress W, Steinhagen-Thiessen E, Dittmar G, Spuler S. Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue. Sci Rep 2020; 10:2158. [PMID: 32034223 PMCID: PMC7005895 DOI: 10.1038/s41598-020-58668-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy.
Collapse
Affiliation(s)
- Stefanie Anke Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.
| | - Oliver Popp
- Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
- Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany
| | - Stefanie Haafke
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Nicole Jedraszczak
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Ulrike Grieben
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Kathrin Saar
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
| | - Giannino Patone
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
| | - Wolfram Kress
- Institute for Human Genetics, Julius-Maximilians-University of Würzburg, Würzburg, 97074, Germany
| | | | - Gunnar Dittmar
- Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
- Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.
| |
Collapse
|
3
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
4
|
Allen SC, Mamotte CDS. Pleiotropic and Adverse Effects of Statins-Do Epigenetics Play a Role? J Pharmacol Exp Ther 2017; 362:319-326. [PMID: 28576976 DOI: 10.1124/jpet.117.242081] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Statins are widely used to prevent major cardiovascular events by lowering serum cholesterol. There is evidence that statins have pleiotropic effects-that is, cholesterol-independent effects-that may also confer protection from cardiovascular disease and potentially numerous other pathologies, including cancer. Statins also have a number of well described adverse effects, including myopathy, rhabdomyolysis, liver damage, and type 2 diabetes. This paper examines the evidence of epigenetic modifications as a contributory factor to the pleiotropic and adverse effects of statins. In vitro and animal studies have shown that statins can inhibit histone deacetylase activity and increase histone acetylation. Similarly, there is evidence that statins may inhibit both histone and DNA methyltransferases and subsequently demethylate histone residues and DNA, respectively. These changes have been shown to alter expression of various genes, including tumor suppressor genes and genes thought to have anti-atherosclerotic actions. Statins have also been shown to influence the expression of numerous microRNAs that suppress the translation of proteins involved in tumorigenesis and vascular function. Whether the adverse effects of statins may also have an epigenetic component has been less widely studied, although there is evidence that microRNA expression may be altered in statin-induced muscle and liver damage. As epigenetics and microRNAs influence gene expression, these changes could contribute to the pleiotropic and adverse effects of statins and have long-lasting effects on the health of statin users.
Collapse
Affiliation(s)
- Stephanie C Allen
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia
| | - Cyril D S Mamotte
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia
| |
Collapse
|
5
|
Herman D, Leakey TI, Behrens A, Yao-Borengasser A, Cooney CA, Jousheghany F, Phanavanh B, Siegel ER, Safar AM, Korourian S, Kieber-Emmons T, Monzavi-Karbassi B. CHST11 gene expression and DNA methylation in breast cancer. Int J Oncol 2015; 46:1243-51. [PMID: 25586191 PMCID: PMC4324579 DOI: 10.3892/ijo.2015.2828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/03/2014] [Indexed: 01/09/2023] Open
Abstract
Our previously published data link P-selectin-reactive chondroitin sulfate structures on the surface of breast cancer cells to metastatic behavior of cells. We have shown that a particular sulfation pattern mediated by the expression of carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) correlates with P-selectin binding and aggressiveness of human breast cancer cell lines. The present study was performed to evaluate the prognostic value of CHST11 expression and determine whether aberrant DNA methylation controls CHST11 expression in breast cancer. Publicly available datasets were used to examine the association of CHST11 expression to aggressiveness and progression of breast cancer. Methylation status was analyzed using bisulfite genomic sequencing. 5-aza-2′-deoxycytidine (5AzadC) was used for DNA demethylation. Reduced representation bisulfite sequencing was performed in the CpG island of CHST11 with a minimum coverage of 10. Quantitative real-time RT-PCR was employed to confirm the expression profile of CHST11 in breast cancer cell lines. Flow cytometry was also used to confirm the expression of the CHST11 product, chondroitin sulfate A (CS-A). The expression of CHST11 was significantly higher in basal-like and Her2-amplified cell lines compared to luminal cell lines. CHST11 was also highly expressed in cancer tissues compared to normal tissues and the expression levels were significantly associated with tumor progression. We observed very low levels of DNA methylation in a CpG island of CHST11 in basal-like cells but very high levels in the same region in luminal cells. Treatment of MCF7 cells, a luminal cell line with very low expression of CHST11, with 5AzadC increased the expression of CHST11 and its immediate product, CS-A, in a dose-dependent manner. These results suggest that CHST11 may play a direct role in progression of breast cancer and that its expression is controlled by DNA methylation. Therefore, in addition to CHST11 mRNA levels, the methylation status of this gene also has potential as a prognostic biomarker.
Collapse
Affiliation(s)
- Damir Herman
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Tatiana I Leakey
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alice Behrens
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aiwei Yao-Borengasser
- Department of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Craig A Cooney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Fariba Jousheghany
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Bounleut Phanavanh
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - A Mazin Safar
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Soheila Korourian
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas Kieber-Emmons
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|