1
|
Anbara H, Kian M, Darya G, Sheibani MT. Long-term intake of aspartame-induced cardiovascular toxicity is reflected in altered histochemical parameters, evokes oxidative stress, and trigger P53-dependent apoptosis in a mouse model. Int J Exp Pathol 2022; 103:252-262. [PMID: 36251541 PMCID: PMC9664407 DOI: 10.1111/iep.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/16/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
Aspartame (ASP) is probably the best known artificial sugar substitute that is used widely in food. Many experimental studies have reported the toxicity of long-term administration of ASP in various organ tissues. However, there is little evidence available about the nature and mechanisms of the adverse effects of long-term consumption of ASP on the cardiovascular system. This study was conducted to evaluate the possible effects of ASP on heart tissue. For this study 36 mature male mice were divided into one control group and three groups which received respectively 40 mg/kg, 80 mg/kg and 160 mg/kg ASP orally, for 90 days. ASP at the doses of 80 and 160 mg/kg increased the serum content of malondialdehyde (MDA), but decreased serum nitric oxide (NO), creatine kinase (CK) and CK-MB, as well as blood superoxide dismutase (SOD) levels. Serum level of total anti-oxidant capacity (TAC) in blood was also reduced in serum at the dose of 80 mg/kg. Histochemical staining, including Periodic acid-Schiff, Masson's trichrome and Verhoeff-van Gieson staining, indicated that ASP at doses of 80 and 160 mg/kg reduced glycogen deposition and decreased the number of collagen and elastic fibres in the cardiac tissue. The cardiac expression of pro-apoptotic genes, including P53, Bax, Bcl-2 and Caspase-3, was modulated at the dose of 160 mg/kg. Moreover, transcription of Caspase-3 was up-regulated at the dose of 80 mg/kg. In conclusion, long-term consumption of ASP any higher than the acceptable daily intake (40 mg/kg) appears to act by promoting oxidative stress, has the potential to alter both histopathological and biochemical parameters, and induces P53-dependent apoptosis in cardiac tissue.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Basic Sciences, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Gholam‐Hossein Darya
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | | |
Collapse
|
2
|
Singh S, Singh T, Kunja C, Dhoat NS, Dhania NK. Gene-editing, immunological and iPSCs based therapeutics for muscular dystrophy. Eur J Pharmacol 2021; 912:174568. [PMID: 34656607 DOI: 10.1016/j.ejphar.2021.174568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Muscular dystrophy is a well-known genetically heterogeneous group of rare muscle disorders. This progressive disease causes the breakdown of skeletal muscles over time and leads to grave weakness. This breakdown is caused by a diverse pattern of mutations in dystrophin and dystrophin associated protein complex. These mutations lead to the production of altered proteins in response to which, the body stimulates production of various cytokines and immune cells, particularly reactive oxygen species and NFκB. Immune cells display/exhibit a dual role by inducing muscle damage and muscle repair. Various anti-oxidants, anti-inflammatory and glucocorticoid drugs serve as potent therapeutics for muscular dystrophy. Along with the above mentioned therapeutics, induced pluripotent stem cells also serve as a novel approach paving a way for personalized treatment. These pluripotent stem cells allow regeneration of large numbers of regenerative myogenic progenitors that can be administered in muscular dystrophy patients which assist in the recovery of lost muscle fibers. In this review, we have summarized gene-editing, immunological and induced pluripotent stem cell based therapeutics for muscular dystrophy treatment.
Collapse
Affiliation(s)
- Shagun Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Tejpal Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Chaitanya Kunja
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Navdeep S Dhoat
- Department of Pediatrics Surgery, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Narender K Dhania
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India.
| |
Collapse
|
3
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
4
|
Mangum LC, Mangum LH, Chambers JE, Ross MK, Meek EC, Wills RW, Crow JA. The association of serum trans-nonachlor levels with atherosclerosis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:210-220. [PMID: 26953872 PMCID: PMC4902318 DOI: 10.1080/15287394.2016.1143901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent epidemiological studies suggest a strong association between exposure to environmental contaminants, including organochlorine (OC) insecticides or their metabolites, and development of pathologies, such as atherosclerosis, in which oxidative stress plays a significant etiological role. Biomarkers of systemic oxidative stress have the potential to link production of reactive oxygen species (ROS), which are formed as a result of exposure to xenobiotic toxicants, and underlying pathophysiological states. Measurement of F2-isoprostane concentrations in body fluids is the most accurate and sensitive method currently available for assessing in vivo steady-state oxidative stress levels. In the current study, urinary concentrations of F2-isoprostanes and serum levels of persistent OC compounds p,p'-dichlorodiphenyldichloroethene (DDE), trans-nonachlor (a component of the technical chlordane mixture), and oxychlordane (a chlordane metabolite) were quantified in a cross-sectional study sample and the association of these factors with a clinical diagnosis of atherosclerosis determined. Urinary isoprostane levels were not associated with atherosclerosis or serum concentrations of OC compounds in this study sample. However, occurrence of atherosclerosis was found to be associated with serum trans-nonachlor levels. DDE and oxychlordane were not associated with atherosclerosis. This finding supports current evidence that exposure to environmental factors is a risk factor for atherosclerosis, in addition to other known risk factors.
Collapse
Affiliation(s)
- Lee C. Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Lauren H. Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Janice E. Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Matthew K. Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Edward C. Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - Robert W. Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| | - J. Allen Crow
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
5
|
Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol 2014; 5:285. [PMID: 25161621 PMCID: PMC4130307 DOI: 10.3389/fphys.2014.00285] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy ; Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|