1
|
Ahmad A, Imran M, Sharma N. Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics 2022; 14:2463. [PMID: 36432653 PMCID: PMC9697541 DOI: 10.3390/pharmaceutics14112463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The dire need for the assessment of human and environmental endangerments of nanoparticulate material has motivated the formulation of novel scientific tools and techniques to detect, quantify, and characterize these nanomaterials. Several of these paradigms possess enormous possibilities for applications in many of the realms of nanotoxicology. Furthermore, in a large number of cases, the limited capabilities to assess the environmental and human toxicological outcomes of customized and tailored multifunctional nanoparticles used for drug delivery have hindered their full exploitation in preclinical and clinical settings. With the ever-compounded availability of nanoparticulate materials in commercialized settings, an ever-arising popular debate has been egressing on whether the social, human, and environmental costs associated with the risks of nanomaterials outweigh their profits. Here we briefly review the various health, pharmaceutical, and regulatory aspects of nanotoxicology of engineered multifunctional nanoparticles in vitro and in vivo. Several aspects and issues encountered during the safety and toxicity assessments of these drug-delivery nanocarriers have also been summarized. Furthermore, recent trends implicated in the nanotoxicological evaluations of nanoparticulate matter in vitro and in vivo have also been discussed. Due to the absence of robust and rigid regulatory guidelines, researchers currently frequently encounter a larger number of challenges in the toxicology assessment of nanocarriers, which have also been briefly discussed here. Nanotoxicology has an appreciable and significant part in the clinical translational development as well as commercialization potential of nanocarriers; hence these aspects have also been touched upon. Finally, a brief overview has been provided regarding some of the nanocarrier-based medicines that are currently undergoing clinical trials, and some of those which have recently been commercialized and are available for patients. It is expected that this review will instigate an appreciable interest in the research community working in the arena of pharmaceutical drug development and nanoformulation-based drug delivery.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Nisha Sharma
- Division of Nephrology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
2
|
Hayat H, Nukala A, Nyamira A, Fan J, Wang P. A concise review: the synergy between artificial intelligence and biomedical nanomaterials that empowers nanomedicine. Biomed Mater 2021; 16. [PMID: 34280907 DOI: 10.1088/1748-605x/ac15b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
Nanomedicine has recently experienced unprecedented growth and development. However, the complexity of operations at the nanoscale introduces a layer of difficulty in the clinical translation of nanodrugs and biomedical nanotechnology. This problem is further exacerbated when engineering and optimizing nanomaterials for biomedical purposes. To navigate this issue, artificial intelligence (AI) algorithms have been applied for data analysis and inference, allowing for a more applicable understanding of the complex interaction amongst the abundant variables in a system involving the synthesis or use of nanomedicine. Here, we report on the current relationship and implications of nanomedicine and AI. Particularly, we explore AI as a tool for enabling nanomedicine in the context of nanodrug screening and development, brain-machine interfaces and nanotoxicology. We also report on the current state and future direction of nanomedicine and AI in cancer, diabetes, and neurological disorder therapy.
Collapse
Affiliation(s)
- Hasaan Hayat
- Precision Health Program,, Michigan State University, East Lansing, MI, United States of America.,Lyman Briggs College, Michigan State University, East Lansing, MI, United States of America
| | - Arijit Nukala
- Precision Health Program,, Michigan State University, East Lansing, MI, United States of America.,Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Anthony Nyamira
- Lyman Briggs College, Michigan State University, East Lansing, MI, United States of America
| | - Jinda Fan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Ping Wang
- Precision Health Program,, Michigan State University, East Lansing, MI, United States of America.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
3
|
Akhter MH, Beg S, Tarique M, Malik A, Afaq S, Choudhry H, Hosawi S. Receptor-based targeting of engineered nanocarrier against solid tumors: Recent progress and challenges ahead. Biochim Biophys Acta Gen Subj 2020; 1865:129777. [PMID: 33130062 DOI: 10.1016/j.bbagen.2020.129777] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Background In past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity. Scope of review The applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems. Major conclusions In spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment. General significance This review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.
Collapse
Affiliation(s)
- Md Habban Akhter
- Department of Pharmaceutics, Faculty of Pharmacy, DIT University, Dehradun, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Mohammed Tarique
- Center for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Arshi Malik
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sarah Afaq
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018; 9:1410. [PMID: 29650952 PMCID: PMC5897557 DOI: 10.1038/s41467-018-03705-y] [Citation(s) in RCA: 1301] [Impact Index Per Article: 216.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Targeted delivery approaches for cancer therapeutics have shown a steep rise over the past few decades. However, compared to the plethora of successful pre-clinical studies, only 15 passively targeted nanocarriers (NCs) have been approved for clinical use and none of the actively targeted NCs have advanced past clinical trials. Herein, we review the principles behind targeted delivery approaches to determine potential reasons for their limited clinical translation and success. We propose criteria and considerations that must be taken into account for the development of novel actively targeted NCs. We also highlight the possible directions for the development of successful tumor targeting strategies. Targeted delivery strategies based on nanocarriers have immense potential to change cancer care but current strategies have been shown only limited translation in the clinic. Here, the authors survey the challenge, progress and opportunities towards targeted delivery of cancer therapeutics.
Collapse
|
5
|
Sprintz M, Tasciotti E, Allegri M, Grattoni A, Driver LC, Ferrari M. Nanomedicine: Ushering in a new era of pain management. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.eujps.2011.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, Herholz K, Bokde ALW, Jessen F, Hoessler YC, Sanhai WR, Zetterberg H, Woodcock J, Blennow K. Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 2010; 9:560-74. [PMID: 20592748 DOI: 10.1038/nrd3115] [Citation(s) in RCA: 479] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Advances in therapeutic strategies for Alzheimer's disease that lead to even small delays in onset and progression of the condition would significantly reduce the global burden of the disease. To effectively test compounds for Alzheimer's disease and bring therapy to individuals as early as possible there is an urgent need for collaboration between academic institutions, industry and regulatory organizations for the establishment of standards and networks for the identification and qualification of biological marker candidates. Biomarkers are needed to monitor drug safety, to identify individuals who are most likely to respond to specific treatments, to stratify presymptomatic patients and to quantify the benefits of treatments. Biomarkers that achieve these characteristics should enable objective business decisions in portfolio management and facilitate regulatory approval of new therapies.
Collapse
Affiliation(s)
- Harald Hampel
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Johann Wolfgang Goethe-University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Seven challenges for nanomedicine. NATURE NANOTECHNOLOGY 2008; 3:242-244. [PMID: 18654511 DOI: 10.1038/nnano.2008.114] [Citation(s) in RCA: 343] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Wendy R Sanhai
- The Office of the Commissioner, Food & Drug Administration, Rockville, Maryland 20857, USA
| | | | | | | |
Collapse
|