1
|
Mauran L, Assailly C, Goudreau SR, Odaert B, Guichard G, Pasco M. Short Oligourea Foldamers as N- or C-Caps for Promoting α-Helix Formation in Water. Chembiochem 2024; 25:e202400427. [PMID: 38943628 DOI: 10.1002/cbic.202400427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
While foldamers have been extensively studied as protein mimics and especially as α-helix mimics, their use as capping motif to enhance α-helix propensity remains comparatively much limited. In this study, we leverage the structural similarities between urea-based helical foldamers and α-helix to investigate the efficacy of oligoureas as N- or C-caps for reinforcing α-helical structures in water. Short oligoureas, comprising 3 to 4 residues, were strategically introduced at the N- or C-terminus of two peptide sequences (S-peptide and an Ala-rich model sequence). The impact of these foldamer insertions on peptide conformation was examined using electronic circular dichroism (ECD) and solution NMR. This research identifies specific foldamer sequences capable of promoting α-helicity when incorporated at either terminus of the peptides. Not only does this work broaden the application scope of foldamers, but it also provides valuable insights into novel strategies for modulating peptide conformation in aqueous environments. The findings presented in this study may have implications for peptide design and the development of bioactive foldamer-based peptide mimics.
Collapse
Affiliation(s)
- Laura Mauran
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600, Pessac, France
- IMMUPHARMA BIOTECH SAS, 15 rue de Bruxelles, 75009, Paris, France
| | - Coralie Assailly
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600, Pessac, France
| | | | - Benoît Odaert
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
| | - Gilles Guichard
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600, Pessac, France
| | - Morgane Pasco
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR5248, IECB, 2 rue Robert Escarpit, F-33600, Pessac, France
| |
Collapse
|
2
|
Brango-Vanegas J, Leite ML, Macedo MLR, Cardoso MH, Franco OL. Capping motifs in antimicrobial peptides and their relevance for improved biological activities. Front Chem 2024; 12:1382954. [PMID: 38873409 PMCID: PMC11169826 DOI: 10.3389/fchem.2024.1382954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
N-capping (N-cap) and C-capping (C-cap) in biologically active peptides, including specific amino acids or unconventional group motifs, have been shown to modulate activity against pharmacological targets by interfering with the peptide's secondary structure, thus generating unusual scaffolds. The insertion of capping motifs in linear peptides has been shown to prevent peptide degradation by reducing its susceptibility to proteolytic cleavage, and the replacement of some functional groups by unusual groups in N- or C-capping regions in linear peptides has led to optimized peptide variants with improved secondary structure and enhanced activity. Furthermore, some essential amino acid residues that, when placed in antimicrobial peptide (AMP) capping regions, are capable of complexing metals such as Cu2+, Ni2+, and Zn2+, give rise to the family known as metallo-AMPs, which are capable of boosting antimicrobial efficacy, as well as other activities. Therefore, this review presents and discusses the different strategies for creating N- and C-cap motifs in AMPs, aiming at fine-tuning this class of antimicrobials.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Maria L. R. Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Marlon H. Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
3
|
Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. RSC Med Chem 2023; 14:2496-2508. [PMID: 38107173 PMCID: PMC10718590 DOI: 10.1039/d3md00487b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 12/19/2023] Open
Abstract
Protein-protein interactions (PPIs) control many essential biological pathways which are often misregulated in disease. As such, selective PPI modulators are desirable to unravel complex functions of PPIs and thus expand the repertoire of therapeutic targets. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets for conventional drug modalities, rendering most PPIs "undruggable". Therefore, there is a growing need to discover innovative molecules that are able to modulate crucial PPIs. Peptides are ideal candidates to deliver such therapeutics attributed to their ability to closely mimic structural features of protein interfaces. However, their inherently poor proteolysis resistance and cell permeability inevitably hamper their biomedical applications. The introduction of a constraint (i.e., peptide cyclization) to stabilize peptides' secondary structure is a promising strategy to address this problem as witnessed by the rapid development of cyclic peptide drugs in the past two decades. Here, we comprehensively review the recent progress on stabilized cyclic peptides in targeting challenging PPIs. Technological advancements and emerging chemical approaches for stabilizing active peptide conformations are categorized in terms of α-helix stapling, β-hairpin mimetics and macrocyclization. To discover potent and selective ligands, cyclic peptide library technologies were updated based on genetic, biochemical or synthetic methodologies. Moreover, several advances to improve the permeability and oral bioavailability of biologically active cyclic peptides enable the de novo development of cyclic peptide ligands with pharmacological properties. In summary, the development of cyclic peptide-based PPI modulators carries tremendous promise for the next generation of therapeutic agents to target historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Junlong Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
| | - Lingyan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haiying Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Yuchi Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University 3601 Hongjing Avenue Nanjing 211171 China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University 639 Longmian Avenue Nanjing 211198 China
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
4
|
Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022; 350:716-733. [PMID: 36030988 DOI: 10.1016/j.jconrel.2022.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 02/06/2023]
Abstract
Peptides, short stretches of amino acids or small proteins that occupy a strategic position between proteins and amino acids, are readily accessible by chemical and biological methods. With ideal properties for forming high-affinity and specific interactions with host target proteins, they have established an important niche in the drug development spectrum complementing small molecule and biological therapeutics. Among the most successful biomedicines in use today, peptide-based drugs show great promise. This, coupled with recent advances in synthetic and nanochemical biology, has led to the creation of tailor-made peptide therapeutics for improved biocompatibility. This review presents an overview of the latest research on pathogen-derived, host-cell-interacting peptides. It also highlights strategies for using peptide-based therapeutics that address cellular transport challenges through the introduction of nanoparticles that serve as platforms to facilitate the delivery of peptide biologics and therapeutics for treating various inflammatory diseases. Finally, this paper describes future perspectives, specific pathogen-based peptides that can enhance specificity, efficiency, and capacity in functional peptide-based therapeutics, which are in the spotlight as new treatment alternatives for various diseases, and also presents verified sequences and targets that can increase chemical and pharmacological value.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Institute of Natural Science & Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea; Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
5
|
Hart P', Hommen P, Noisier A, Krzyzanowski A, Schüler D, Porfetye AT, Akbarzadeh M, Vetter IR, Adihou H, Waldmann H. Structure Based Design of Bicyclic Peptide Inhibitors of RbAp48. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter 't Hart
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Pascal Hommen
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Anaïs Noisier
- Medicinal Chemistry, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceutical R&D AstraZeneca Gothenburg Sweden
| | - Adrian Krzyzanowski
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Darijan Schüler
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Arthur T. Porfetye
- Department of Mechanistic Cell Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Mohammad Akbarzadeh
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Ingrid R. Vetter
- Department of Mechanistic Cell Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Hélène Adihou
- Medicinal Chemistry, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceutical R&D AstraZeneca Gothenburg Sweden
- AstraZeneca MPI Satellite Unit Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
6
|
Hart P', Hommen P, Noisier A, Krzyzanowski A, Schüler D, Porfetye AT, Akbarzadeh M, Vetter IR, Adihou H, Waldmann H. Structure Based Design of Bicyclic Peptide Inhibitors of RbAp48. Angew Chem Int Ed Engl 2021; 60:1813-1820. [PMID: 33022847 PMCID: PMC7894522 DOI: 10.1002/anie.202009749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/11/2022]
Abstract
The scaffolding protein RbAp48 is part of several epigenetic regulation complexes and is overexpressed in a variety of cancers. In order to develop tool compounds for the study of RbAp48 function, we have developed peptide inhibitors targeting the protein-protein interaction interface between RbAp48 and the scaffold protein MTA1. Based on a MTA1-derived linear peptide with low micromolar affinity and informed by crystallographic analysis, a bicyclic peptide was developed that inhibits the RbAp48/MTA1 interaction with a very low nanomolar KD value of 8.56 nM, and which showed appreciable stability against cellular proteases. Design included exchange of a polar amide cyclization strategy to hydrophobic aromatic linkers enabling mono- and bicyclization by means of cysteine alkylation, which improved affinity by direct interaction of the linkers with a hydrophobic residue on RbAp48. Our results demonstrate that stepwise evolution of a structure-based design is a suitable strategy for inhibitor development targeting PPIs.
Collapse
Affiliation(s)
- Peter 't Hart
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Pascal Hommen
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Anaïs Noisier
- Medicinal Chemistry, Research and Early Development CardiovascularRenal and Metabolism, BioPharmaceutical R&DAstraZenecaGothenburgSweden
| | - Adrian Krzyzanowski
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Darijan Schüler
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Arthur T. Porfetye
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Mohammad Akbarzadeh
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Ingrid R. Vetter
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Hélène Adihou
- Medicinal Chemistry, Research and Early Development CardiovascularRenal and Metabolism, BioPharmaceutical R&DAstraZenecaGothenburgSweden
- AstraZeneca MPI Satellite UnitDepartment of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Herbert Waldmann
- Department of Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| |
Collapse
|
7
|
Abstract
The art of transforming peptides into drug leads is still a dynamic and fertile field in medicinal chemistry and drug discovery. Peptidomimetics can respond to peptide limitations by displaying higher metabolic stability, good bioavailability and enhanced receptor affinity and selectivity. Various synthetic strategies have been developed over the years in order to modulate the conformational flexibility and the peptide character of peptidomimetic compounds. This tutorial review aims to outline useful tools towards peptidomimetic design, spanning from local modifications, global restrictions and the use of secondary structure mimetics. Selected successful examples of each approach are presented to document the relevance of peptidomimetics in drug discovery.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence, Italy.
| | | |
Collapse
|
8
|
Merritt HI, Sawyer N, Arora PS. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Pept Sci (Hoboken) 2020; 112:e24145. [PMID: 33575525 PMCID: PMC7875438 DOI: 10.1002/pep2.24145] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Protein secondary and tertiary structure mimics have served as model systems to probe biophysical parameters that guide protein folding and as attractive reagents to modulate protein interactions. Here we review contemporary methods to reproduce loop, helix, sheet and coiled-coil conformations in short peptides.
Collapse
Affiliation(s)
| | | | - Paramjit S. Arora
- Department of Chemistry New York University, New York, New York 10003, United States
| |
Collapse
|
9
|
Negi A, Reilly CO, Jarikote DV, Zhou J, Murphy PV. Multi-targeting protein-protein interaction inhibitors: Evolution of macrocyclic ligands with embedded carbohydrates (MECs) to improve selectivity. Eur J Med Chem 2019; 176:292-309. [PMID: 31112891 DOI: 10.1016/j.ejmech.2019.04.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Compounds targeting multiple proteins can have synergistic effects and are therefore of interest in medicinal chemistry. At the same time, inhibiting protein-protein interactions (PPI) is increasingly desired in the treatment of disorders or diseases. The development of non-peptidomimetic inhibitors is still a challenge. Herein we investigate macrocyclic scaffolds with one or two embedded carbohydrates (MECs) that present amino acid side chains, or related isosteres, as pharmacophoric groups. Firstly, retroscreening of the previously reported eannaphane-40 (E40, 40), a MEC presenting two pharmacophoric groups, against a set of 55 receptor-subtypes led to a finding of sub-micromolar inhibitory activity for E40 against three serotonergic isoforms (5HT1A/2A/2B) as well as the Na+ channel and the NK-2 receptor. We synthesised MECs with an additional pharmacophoric group compared to E40, with a view to identifying compounds where the selectivity profile was altered among the protein hits from the retroscreening. MECs were produced based on scaffolds with two monosaccharide residues, leading to the incorporation of a third pharmacophoric group. Later, homology models were prepared for four proteins (5HT1A, 5HT2A, NK2 and site-2 of the sodium channel) whose 3D structure is unknown. Inverse docking of the synthesised compounds led to the selection of a new MEC (MEC-B) for protein binding assays. MEC-B was found to have its selectivity profile modulated, in line with docking prediction, compared to E40. MEC-B is dual inhibitor of both 5-HT1A and the sodium channel with improved selectivity for these proteins compared to 5-HT2A/2B/2C, 5-HT transporter and NK2 receptor. Thus, a new multitargeting compound, with an improved selectivity profile was identified, based on a MEC peptidomimetic scaffold.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Ciaran O Reilly
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Dilip V Jarikote
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jian Zhou
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
10
|
Jiang Y, Jiang X, Shi X, Yang F, Cao Y, Qin X, Hou Z, Xie M, Liu N, Fang Q, Yin F, Han W, Li Z. α-Helical Motif as Inhibitors of Toxic Amyloid-β Oligomer Generation via Highly Specific Recognition of Amyloid Surface. iScience 2019; 17:87-100. [PMID: 31255986 PMCID: PMC6606958 DOI: 10.1016/j.isci.2019.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/10/2019] [Accepted: 06/12/2019] [Indexed: 11/15/2022] Open
Abstract
Amyloid fibril surfaces can convert soluble proteins into toxic oligomers and are attractive targets for intervention of protein aggregation diseases. Thus far, molecules identified with inhibitory activity are either large proteins or flat cyclic compounds lacking in specificity. The main design difficulty is flatness of amyloid surfaces and the lack of knowledge on binding interfaces. Here, we demonstrate, for the first time, a rational design of alpha-helical peptide inhibitors targeting the amyloid-beta 40 (Aβ40) fibril surfaces, based on our in silico finding that a helical fragment of Aβ40 interacts in a unique way with side-chain arrays on the fibril surface. We strengthen the fragment's binding capability through mutations and helicity enhancement with our Terminal Aspartic acid strategy. The resulting inhibitor shows micromolar affinity for the fibril surface, effectively impedes the surface-mediated oligomerization of Aβ40, and mitigates its cytotoxicity. This work opens up an avenue to designing aggregation modulators for amyloid diseases.
Collapse
Affiliation(s)
- Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Xuehan Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xiaodong Shi
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yang Cao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Mingsheng Xie
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Na Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Qi Fang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
11
|
Guarracino DA, Riordan JA, Barreto GM, Oldfield AL, Kouba CM, Agrinsoni D. Macrocyclic Control in Helix Mimetics. Chem Rev 2019; 119:9915-9949. [DOI: 10.1021/acs.chemrev.8b00623] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Danielle A. Guarracino
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Jacob A. Riordan
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Gianna M. Barreto
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Alexis L. Oldfield
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Christopher M. Kouba
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Desiree Agrinsoni
- Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| |
Collapse
|
12
|
Peptide-oligourea hybrids analogue of GLP-1 with improved action in vivo. Nat Commun 2019; 10:924. [PMID: 30804332 PMCID: PMC6389962 DOI: 10.1038/s41467-019-08793-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/21/2019] [Indexed: 01/19/2023] Open
Abstract
Peptides have gained so much attention in the last decade that they are now part of the main strategies, with small molecules and biologics, for developing new medicines. Despite substantial progress, the successful development of peptides as drugs still requires a number of limitations to be addressed, including short in vivo half-lives and poor membrane permeability. Here, we describe the use of oligourea foldamers as tool to improve the pharmaceutical properties of GLP-1, a 31 amino acid peptide hormone involved in metabolism and glycemic control. Our strategy consists in replacing four consecutive amino acids of GLP-1 by three consecutive ureido residues by capitalizing on the structural resemblance of oligourea and α-peptide helices. The efficacy of the approach is demonstrated with three GLP-1-oligourea hybrids showing prolonged activity in vivo. Our findings should enable the use of oligoureas in other peptides to improve their pharmaceutical properties and may provide new therapeutic applications.
Collapse
|
13
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
14
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
15
|
Findeisen F, Campiglio M, Jo H, Abderemane-Ali F, Rumpf CH, Pope L, Rossen ND, Flucher BE, DeGrado WF, Minor DL. Stapled Voltage-Gated Calcium Channel (Ca V) α-Interaction Domain (AID) Peptides Act As Selective Protein-Protein Interaction Inhibitors of Ca V Function. ACS Chem Neurosci 2017; 8:1313-1326. [PMID: 28278376 PMCID: PMC5481814 DOI: 10.1021/acschemneuro.6b00454] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
![]()
For many voltage-gated
ion channels (VGICs), creation of a properly functioning ion channel
requires the formation of specific protein–protein interactions
between the transmembrane pore-forming subunits and cystoplasmic accessory
subunits. Despite the importance of such protein–protein interactions
in VGIC function and assembly, their potential as sites for VGIC modulator
development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that
target a prototypic VGIC high affinity protein–protein interaction,
the interaction between the voltage-gated calcium channel (CaV) pore-forming subunit α-interaction domain (AID) and
cytoplasmic β-subunit (CaVβ). We show using
circular dichroism spectroscopy, X-ray crystallography, and isothermal
titration calorimetry that the m-xylyl staples enhance
AID helix formation are structurally compatible with native-like AID:CaVβ interactions and reduce the entropic penalty associated
with AID binding to CaVβ. Importantly, electrophysiological
studies reveal that stapled AID peptides act as effective inhibitors
of the CaVα1:CaVβ interaction
that modulate CaV function in an CaVβ
isoform-selective manner. Together, our studies provide a proof-of-concept
demonstration of the use of protein–protein interaction inhibitors
to control VGIC function and point to strategies for improved AID-based
CaV modulator design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daniel L. Minor
- Molecular Biophysics & Integrated Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
16
|
An in-tether sulfoxide chiral center influences the biophysical properties of the N-capped peptides. Bioorg Med Chem 2017; 25:1756-1761. [DOI: 10.1016/j.bmc.2016.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022]
|
17
|
Li J, Hu K, Chen H, Wu Y, Chen L, Yin F, Tian Y, Li Z. An in-tether chiral center modulates the proapoptotic activity of the KLA peptide. Chem Commun (Camb) 2017; 53:10452-10455. [DOI: 10.1039/c7cc04923d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have utilized a novel in-tether chiral center induced helicity strategy (CIH) to develop a potent apoptosis inducer based on apoptotic KLA peptide. For our constructed peptides, the CIH-KLA-(R) epimer exhibited superior cellular uptakes and special mitochondrial targeting when compared with its S counterpart.
Collapse
Affiliation(s)
- Jingxu Li
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Kuan Hu
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Hailing Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Science
- Southern Medical University
- Guangzhou
- China
| | - YuJie Wu
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Longjian Chen
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Feng Yin
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| | - Yuan Tian
- School of Life Science and Engineering
- Southwest Jiaotong University
- Chengdu 611756
- P. R. China
| | - Zigang Li
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- P. R. China
| |
Collapse
|
18
|
Abstract
Bio-inspired synthetic backbones leading to foldamers can provide effective biopolymer mimics with new and improved properties in a physiological environment, and in turn could serve as useful tools to study biology and lead to practical applications in the areas of diagnostics or therapeutics. Remarkable progress has been accomplished over the past 20 years with the discovery of many potent bioactive foldamers originating from diverse backbones and targeting a whole spectrum of bio(macro)molecules such as membranes, protein surfaces, and nucleic acids. These current achievements, future opportunities, and key challenges that remain are discussed in this article.
Collapse
|
19
|
Hoang HN, Wu C, Beyer RL, Hill TA, Fairlie DP. Alpha Helix Nucleation by a Simple Cyclic Tetrapeptide. Aust J Chem 2017. [DOI: 10.1071/ch16591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The simple cyclic tetrapeptide cyclo-(1,4)-[Ala-Arg-Ala-homoGlu]-NH2 (3) is shown to adopt an unusual α-turn structure, which is not α-helical but can nucleate α-helicity when attached to the N-terminus of either model peptides or two biologically relevant peptides. This new N-terminal helix-capping macrocycle provides very simple and rapid synthetic access to α-helical peptide structures.
Collapse
|
20
|
Zhang Q, Jiang F, Zhao B, Lin H, Tian Y, Xie M, Bai G, Gilbert AM, Goetz GH, Liras S, Mathiowetz AA, Price DA, Song K, Tu M, Wu Y, Wang T, Flanagan ME, Wu YD, Li Z. Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity. Sci Rep 2016; 6:38573. [PMID: 27934919 PMCID: PMC5146914 DOI: 10.1038/srep38573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022] Open
Abstract
Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity.
Collapse
Affiliation(s)
- Qingzhou Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bingchuan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Huacan Lin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mingsheng Xie
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guoyun Bai
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Adam M Gilbert
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Gilles H Goetz
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Spiros Liras
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Alan A Mathiowetz
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - David A Price
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Kun Song
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Meihua Tu
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Yujie Wu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tao Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mark E Flanagan
- Center for Chemistry Innovation and Excellence, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,College of Chemistry, Peking University, Beijing, 100871, China
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
21
|
Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Angew Chem Int Ed Engl 2016; 55:12088-93. [DOI: 10.1002/anie.201606833] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Hui Zhao
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Qi-Song Liu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
- Shenzhen Key Lab of Tissue Engineering; The Second People's Hospital of Shenzhen; Shenzhen 518035 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Min Cheng
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yan-Hong Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ming-Sheng Xie
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Xiao-Gang Niu
- College of Chemistry and Molecular Engineering; Beijing Nuclear Magnetic Resonance Center; Peking University; Beijing 100871 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ya-Ou Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yuan-Zhi Lao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Nai-Han Xu
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| |
Collapse
|
22
|
Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Zhao
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Qi-Song Liu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
- Shenzhen Key Lab of Tissue Engineering; The Second People's Hospital of Shenzhen; Shenzhen 518035 China
| | - Hao Geng
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Min Cheng
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yan-Hong Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ming-Sheng Xie
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Xiao-Gang Niu
- College of Chemistry and Molecular Engineering; Beijing Nuclear Magnetic Resonance Center; Peking University; Beijing 100871 China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Ya-Ou Zhang
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Yuan-Zhi Lao
- School of Pharmacy; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| | - Nai-Han Xu
- Key Lab in Healthy Science and Technology; Division of Life Science; Shenzhen Graduate School of Tsinghua University; Shenzhen 518055 China
| | - Zi-Gang Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School of Peking University; Shenzhen 518055 China
| |
Collapse
|
23
|
Cromm PM, Schaubach S, Spiegel J, Fürstner A, Grossmann TN, Waldmann H. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides. Nat Commun 2016; 7:11300. [PMID: 27075966 PMCID: PMC4834642 DOI: 10.1038/ncomms11300] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/11/2016] [Indexed: 02/06/2023] Open
Abstract
Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. Bicyclic peptides can inhibit biological targets hard to address with small molecules. Here, the authors combine two orthogonal ring-closing reactions to produce bicyclic peptides with improved bioactivity thereby providing a strategy that can greatly improve the structural diversity of such peptides.
Collapse
Affiliation(s)
- Philipp M Cromm
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Sebastian Schaubach
- Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany
| | - Jochen Spiegel
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | - Alois Fürstner
- Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim/Ruhr, Germany
| | - Tom N Grossmann
- Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany.,Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Strasse 15, D-44227 Dortmund, Germany.,Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie and Chemische Biologie, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| |
Collapse
|
24
|
Tian Y, Wang D, Li J, Shi C, Zhao H, Niu X, Li Z. A proline-derived transannular N-cap for nucleation of short α-helical peptides. Chem Commun (Camb) 2016; 52:9275-8. [DOI: 10.1039/c6cc04672j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a simple and practical proline-derived transannular N-cap as a helix nucleating template in diverse bio-related peptide sequences via macrolactamization on resin.
Collapse
Affiliation(s)
- Yuan Tian
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Dongyuan Wang
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Jingxu Li
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Chuan Shi
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Hui Zhao
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering
- Beijing Nuclear Magnetic Resonance Center
- Peking University
- Beijing
- China
| | - Zigang Li
- School of Chemical Biology and Biotechnology
- Shenzhen Graduate School of Peking University
- Shenzhen
- China
| |
Collapse
|
25
|
Mauran L, Kauffmann B, Odaert B, Guichard G. Stabilization of an α-helix by short adjacent accessory foldamers. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 506] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
27
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Strukturbasierte Entwicklung von Protein-Protein-Interaktionsinhibitoren: Stabilisierung und Nachahmung von Peptidliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412070] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Cromm PM, Spiegel J, Grossmann TN. Hydrocarbon stapled peptides as modulators of biological function. ACS Chem Biol 2015; 10:1362-75. [PMID: 25798993 DOI: 10.1021/cb501020r] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based drug discovery has experienced a significant upturn within the past decade since the introduction of chemical modifications and unnatural amino acids has allowed for overcoming some of the drawbacks associated with peptide therapeutics. Strengthened by such features, modified peptides become capable of occupying a niche that emerges between the two major classes of today's therapeutics-small molecules (<500 Da) and biologics (>5000 Da). Stabilized α-helices have proven particularly successful at impairing disease-relevant PPIs previously considered "undruggable." Among those, hydrocarbon stapled α-helical peptides have emerged as a novel class of potential peptide therapeutics. This review provides a comprehensive overview of the development and applications of hydrocarbon stapled peptides discussing the benefits and limitations of this technique.
Collapse
Affiliation(s)
- Philipp M. Cromm
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Jochen Spiegel
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Tom N. Grossmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
- Technical University Dortmund, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| |
Collapse
|
29
|
Tsomaia N. Peptide therapeutics: Targeting the undruggable space. Eur J Med Chem 2015; 94:459-70. [DOI: 10.1016/j.ejmech.2015.01.014] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 01/04/2023]
|
30
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014; 53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2013] [Indexed: 12/18/2022]
Abstract
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.
Collapse
Affiliation(s)
- Timothy A Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 (Australia)
| | | | | | | |
Collapse
|
31
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401058] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Milroy LG, Grossmann TN, Hennig S, Brunsveld L, Ottmann C. Modulators of Protein–Protein Interactions. Chem Rev 2014; 114:4695-748. [DOI: 10.1021/cr400698c] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Tom N. Grossmann
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Sven Hennig
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße 15, 44227 Dortmund, Germany
| | - Luc Brunsveld
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory
of Chemical Biology and Institute of Complex Molecular Systems, Department
of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech
2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
33
|
Góngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chem Rev 2013; 114:901-26. [DOI: 10.1021/cr400031z] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Miriam Góngora-Benítez
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Judit Tulla-Puche
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), Barcelona, 08028 Spain
- CIBER-BBN, Barcelona Science
Park, Barcelona, 08028 Spain
- Department
of Organic Chemistry, University of Barcelona, Barcelona, 08028 Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001 Durban, South Africa
| |
Collapse
|
34
|
Abstract
The suite of currently used drugs can be divided into two categories - traditional 'small molecule' drugs with typical molecular weights of <500 Da but with oral bioavailability, and much larger 'biologics' typically >5000 Da that are not orally bioavailable and need to be delivered via injection. Due to their small size, conventional small molecule drugs may suffer from reduced target selectivity that often ultimately manifests in human side-effects, whereas protein therapeutics tend to be exquisitely specific for their targets due to many more interactions with them, but this comes at a cost of low bioavailability, poor membrane permeability, and metabolic instability. The time has now come to reinvestigate new drug leads that fit between these two molecular weight extremes, with the goal of combining advantages of small molecules (cost, conformational restriction, membrane permeability, metabolic stability, oral bioavailability) with those of proteins (natural components, target specificity, high potency). This article uses selected examples of peptides to highlight the importance of peptide drugs, some potential new opportunities for their exploitation, and some difficult challenges ahead in this field.
Collapse
Affiliation(s)
- David J Craik
- Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | | | |
Collapse
|
35
|
New modalities in conformationally constrained peptides for potency, selectivity and cell permeation. Future Med Chem 2013; 5:831-49. [DOI: 10.4155/fmc.13.25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There has been a resurgence of interest in peptide pharmaceuticals as they have an advantage of potency, selectivity and less toxicity compared with small-molecule therapeutics. The main draw back of peptides is lack of stability to biological media. Constraining a peptide has been one of the approaches to improving in vivo stability of the peptides. Several new modalities in constraining peptides have been developed over recent years and this review highlights some of the new developments. The newer cyclization strategies have rendered, in some cases, oral activity, cell permeability, improved potency at the target receptor, selectivity against receptor subtypes and improved stability to enzymes. As chemists further understand the rules governing cell permeability, oral absorption and enhancing stability of peptides, we can expect to see more peptides entering clinic for many unmet medical needs.
Collapse
|