1
|
Viviano M, Cipriano A, Fabbrizi E, Feoli A, Castellano S, Sbardella G, Mai A, Milite C, Rotili D. Successes and challenges in the development of BD1-selective BET inhibitors: a patent review. Expert Opin Ther Pat 2024; 34:529-545. [PMID: 38465537 DOI: 10.1080/13543776.2024.2327300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Bromodomain and ExtraTerminal (BET) domain proteins are transcriptional cofactors that, recognizing acetylated lysines of histone and non-histone proteins, can modulate gene expression. The BET family consists of four members, each of which contains two bromodomains (BD1 and BD2) able to recognize the acetylated mark. Pan-BET inhibitors (BETi) have shown a promising anticancer potential in many clinical trials; however, their further development has been in part hampered by the side effects due to their lack of selectivity. Mounting evidence suggests that BD1 is primarily involved in cancer and that its selective inhibition can phenocopy the anticancer effects of pan-BETi with increased tolerability. Therefore, the development of BD1 selective inhibitors is highly pursed in both academia and industry. AREAS COVERED This review aims at giving an overview of the patent literature of BD1-selective BETi between 2014 and 2023. WIPO, USPTO, EPO, and SciFinder® databases were used for the search of patents. EXPERT OPINION The development of BD1-selective BETi, despite challenging, is highly desirable as it could have a great impact on the development of new safer anticancer therapeutics. Several strategies could be applied to discover potent and selective compounds with limited side effects.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Klein DC, Lardo SM, Hainer SJ. The ncBAF Complex Regulates Transcription in AML Through H3K27ac Sensing by BRD9. CANCER RESEARCH COMMUNICATIONS 2024; 4:237-252. [PMID: 38126767 PMCID: PMC10831031 DOI: 10.1158/2767-9764.crc-23-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The non-canonical BAF complex (ncBAF) subunit BRD9 is essential for acute myeloid leukemia (AML) cell viability but has an unclear role in leukemogenesis. Because BRD9 is required for ncBAF complex assembly through its DUF3512 domain, precise bromodomain inhibition is necessary to parse the role of BRD9 as a transcriptional regulator from that of a scaffolding protein. To understand the role of BRD9 bromodomain function in regulating AML, we selected a panel of five AML cell lines with distinct driver mutations, disease classifications, and genomic aberrations and subjected these cells to short-term BRD9 bromodomain inhibition. We examined the bromodomain-dependent growth of these cell lines, identifying a dependency in AML cell lines but not HEK293T cells. To define a mechanism through which BRD9 maintains AML cell survival, we examined nascent transcription, chromatin accessibility, and ncBAF complex binding genome-wide after bromodomain inhibition. We identified extensive regulation of transcription by BRD9 bromodomain activity, including repression of myeloid maturation factors and tumor suppressor genes, while standard AML chemotherapy targets were repressed by inhibition of the BRD9 bromodomain. BRD9 bromodomain activity maintained accessible chromatin at both gene promoters and gene-distal putative enhancer regions, in a manner that qualitatively correlated with enrichment of BRD9 binding. Furthermore, we identified reduced chromatin accessibility at GATA, ETS, and AP-1 motifs and increased chromatin accessibility at SNAIL-, HIC-, and TP53-recognized motifs after BRD9 inhibition. These data suggest a role for BRD9 in regulating AML cell differentiation through modulation of accessibility at hematopoietic transcription factor binding sites. SIGNIFICANCE The bromodomain-containing protein BRD9 is essential for AML cell viability, but it is unclear whether this requirement is due to the protein's role as an epigenetic reader. We inhibited this activity and identified altered gene-distal chromatin regulation and transcription consistent with a more mature myeloid cell state.
Collapse
Affiliation(s)
- David C. Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Zhang W, Ning R, Ran T, Peng Q, Liu Y, Lu T, Chen Y, Jiang M, Jiao Y. Development of 3-acetylindole derivatives that selectively target BRPF1 as new inhibitors of receptor activator of NF-κB ligand (RANKL)-Induced osteoclastogenesis. Bioorg Med Chem 2023; 96:117440. [PMID: 37951134 DOI: 10.1016/j.bmc.2023.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 11/13/2023]
Abstract
Bromodomain and PHD finger-containing (BRPF) proteins function as epigenetic readers that specifically recognize acetylated lysine residues on histone tails. The acetyl-lysine binding pocket of BRPF has emerged as an attractive target for the development of protein interaction inhibitors owing to its potential druggability. In this study, we identified 3-acetylindoles as bone antiresorptive agents with a novel scaffold by performing structure-based virtual screening and hit optimization. Among those derivatives, compound 18 exhibited potent and selective inhibitory activities against BRPF1B (IC50 = 102 nM) as well as outstanding inhibitory activity against osteoclastogenesis (73.8% @ 1 μM) and differentiation (IC50 = 0.19 μM) without cytotoxicity. Besides, cellular mechanism assays demonstrated that compound 18 exhibited a strong bone antiresorptive effect by modulating the RANKL/RANK/NFATc1 pathway. Structural and functional studies on BRPF1 inhibitors aid in making advances to understand the epigenetic mechanisms of bone cell development and create innovative therapeutics for treating bone metastases from solid tumors and other bone erosive diseases.
Collapse
Affiliation(s)
- Wenqiang Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Ruonan Ning
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Ting Ran
- Drug and Vaccine Research Center, Guangzhou Laboratory, Guangzhou 510005, PR China
| | - Qi Peng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Yong Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| | - Min Jiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| | - Yu Jiao
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China.
| |
Collapse
|
4
|
Ali MM, Naz S, Ashraf S, Knapp S, Ul-Haq Z. Epigenetic modulation by targeting bromodomain containing protein 9 (BRD9): Its therapeutic potential and selective inhibition. Int J Biol Macromol 2023; 230:123428. [PMID: 36709803 DOI: 10.1016/j.ijbiomac.2023.123428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The bromodomain-containing protein 9, a component of the SWI/SNF chromatin remodeling complex, functions as an 'epigenetic reader' selectively recognizing acetyl-lysine marks. It regulates chromatin structure and gene expression by recruitment of acetylated transcriptional regulators and by modulating the function of remodeling complexes. Recent data suggests that BRD9 plays an important role in regulating cellular growth and it has been suggested to drive progression of several malignant diseases such as cervical cancer, and acute myeloid leukemia. Its role in tumorigenesis suggests that selective BRD9 inhibitors may have therapeutic value in cancer therapy. Currently, there has been increasing interest in developing small molecules that can specifically target BRD9 or the closely related bromodomain protein BRD7. Available chemical probes will help to clarify biological functions of BRD9 and its potential for cancer therapy. Since the report of the first BRD9 inhibitor LP99 in 2015, numerous inhibitors have been developed. In this review, we summarized the biological roles of BRD9, structural details and the progress made in the development of BRD9 inhibitors.
Collapse
Affiliation(s)
- Maria Mushtaq Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sehrish Naz
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Sajda Ashraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt, Max von Lauestrasse 9, 60438 Frankfurt, Germany; Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max von Lauestrasse 15, 60438 Frankfurt, Germany
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
5
|
Zerio CJ, Sivinski J, Wijeratne EMK, Xu YM, Ngo DT, Ambrose AJ, Villa-Celis L, Ghadirian N, Clarkson MW, Zhang DD, Horton NC, Gunatilaka AAL, Fromme R, Chapman E. Physachenolide C is a Potent, Selective BET Inhibitor. J Med Chem 2023; 66:913-933. [PMID: 36577036 DOI: 10.1021/acs.jmedchem.2c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pulldown using a biotinylated natural product of interest in the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.
Collapse
Affiliation(s)
- Christopher J Zerio
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Jared Sivinski
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - E M Kithsiri Wijeratne
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-Ming Xu
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Duc T Ngo
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Luis Villa-Celis
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Niloofar Ghadirian
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Michael W Clarkson
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Donna D Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Raimund Fromme
- School of Molecular Sciences, Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Chen IP, Ott M. Viral Hijacking of BET Proteins. Viruses 2022; 14:v14102274. [PMID: 36298829 PMCID: PMC9609653 DOI: 10.3390/v14102274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Proteins of the bromodomain and exterminal domain (BET) family mediate critical host functions such as cell proliferation, transcriptional regulation, and the innate immune response, which makes them preferred targets for viruses. These multidomain proteins are best known as transcriptional effectors able to read acetylated histone and non-histone proteins through their tandem bromodomains. They also contain other short motif-binding domains such as the extraterminal domain, which recognizes transcriptional regulatory proteins. Here, we describe how different viruses have evolved to hijack or disrupt host BET protein function through direct interactions with BET family members to support their own propagation. The network of virus-BET interactions emerges as highly intricate, which may complicate the use of small-molecule BET inhibitors-currently in clinical development for the treatment of cancer and cardiovascular diseases-to treat viral infections.
Collapse
Affiliation(s)
- Irene P. Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Correspondence:
| |
Collapse
|
7
|
Wang Q, Shao X, Leung ELH, Chen Y, Yao X. Selectively targeting individual bromodomain: Drug discovery and molecular mechanisms. Pharmacol Res 2021; 172:105804. [PMID: 34450309 DOI: 10.1016/j.phrs.2021.105804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Bromodomain-containing proteins include bromodomain and extra-terminal (BET) and non-BET families. Due to the conserved bromodomain (BD) module between BD-containing proteins, and especially BETs with each member having two BDs (BD1 and BD2), the high degree of structural similarity makes BD-selective inhibitors much difficult to be designed. However, increasing evidences emphasized that individual BDs had distinct functions and different cellular phenotypes after pharmacological inhibition, and selectively targeting one of the BDs could result in a different efficacy and tolerability profile. This review is to summarize the pioneering progress of BD-selective inhibitors targeting BET and non-BET proteins, focusing on their structural features, biological activity, therapeutic application and experimental/theoretical mechanisms. The present proteolysis targeting chimeras (PROTAC) degraders targeting BDs, and clinical status of BD-selective inhibitors were also analyzed, providing a new insight into future direction of bromodomain-selective drug discovery.
Collapse
Affiliation(s)
- Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China
| | - Xiaomin Shao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China
| | - Elaine Lai Han Leung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau(SAR) 999078, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China.
| | - Xiaojun Yao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau(SAR) 999078, China.
| |
Collapse
|
8
|
Sharma T, Robinson DCL, Witwicka H, Dilworth FJ, Imbalzano AN. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation. Nucleic Acids Res 2021; 49:8060-8077. [PMID: 34289068 PMCID: PMC8373147 DOI: 10.1093/nar/gkab617] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins. The mutually exclusive ATPases of mSWI/SNF complexes, BRG1 and BRM, contain bromodomains with undefined functional importance in skeletal muscle differentiation. Pharmacological inhibition of mSWI/SNF bromodomain function using the small molecule PFI-3 reduced differentiation in cell culture and in vivo through decreased myogenic gene expression, while increasing cell cycle-related gene expression and the number of cells remaining in the cell cycle. Comparative gene expression analysis with data from myoblasts depleted of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. Reduced binding of BRG1 and BRM after PFI-3 treatment showed that the bromodomain is required for stable chromatin binding at target gene promoters to alter gene expression. Our findings demonstrate that mSWI/SNF ATPase bromodomains permit stable binding of the mSWI/SNF ATPases to promoters required for cell cycle exit and establishment of muscle-specific gene expression.
Collapse
Affiliation(s)
- Tapan Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hanna Witwicka
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Ghiboub M, Elfiky AMI, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. Selective Targeting of Epigenetic Readers and Histone Deacetylases in Autoimmune and Inflammatory Diseases: Recent Advances and Future Perspectives. J Pers Med 2021; 11:336. [PMID: 33922725 PMCID: PMC8145108 DOI: 10.3390/jpm11050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Ahmed M. I. Elfiky
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Medicine, Institute for Cardiovascular Prevention (IPEK), 80336 Munich, Germany
| | - Nicola R. Harker
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - David F. Tough
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
10
|
Gupta P, Mohanty D. SMMPPI: a machine learning-based approach for prediction of modulators of protein-protein interactions and its application for identification of novel inhibitors for RBD:hACE2 interactions in SARS-CoV-2. Brief Bioinform 2021; 22:6220172. [PMID: 33839740 PMCID: PMC8083326 DOI: 10.1093/bib/bbab111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022] Open
Abstract
Small molecule modulators of protein–protein interactions (PPIs) are being pursued as novel anticancer, antiviral and antimicrobial drug candidates. We have utilized a large data set of experimentally validated PPI modulators and developed machine learning classifiers for prediction of new small molecule modulators of PPI. Our analysis reveals that using random forest (RF) classifier, general PPI Modulators independent of PPI family can be predicted with ROC-AUC higher than 0.9, when training and test sets are generated by random split. The performance of the classifier on data sets very different from those used in training has also been estimated by using different state of the art protocols for removing various types of bias in division of data into training and test sets. The family-specific PPIM predictors developed in this work for 11 clinically important PPI families also have prediction accuracies of above 90% in majority of the cases. All these ML-based predictors have been implemented in a freely available software named SMMPPI for prediction of small molecule modulators for clinically relevant PPIs like RBD:hACE2, Bromodomain_Histone, BCL2-Like_BAX/BAK, LEDGF_IN, LFA_ICAM, MDM2-Like_P53, RAS_SOS1, XIAP_Smac, WDR5_MLL1, KEAP1_NRF2 and CD4_gp120. We have identified novel chemical scaffolds as inhibitors for RBD_hACE PPI involved in host cell entry of SARS-CoV-2. Docking studies for some of the compounds reveal that they can inhibit RBD_hACE2 interaction by high affinity binding to interaction hotspots on RBD. Some of these new scaffolds have also been found in SARS-CoV-2 viral growth inhibitors reported recently; however, it is not known if these molecules inhibit the entry phase.
Collapse
Affiliation(s)
| | - Debasisa Mohanty
- Bioinformatics & Computational Biology research group at NII, New Delhi 110067, India
| |
Collapse
|
11
|
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 2020; 41:223-245. [PMID: 32926459 PMCID: PMC7756446 DOI: 10.1002/med.21730] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Clinical development of bromodomain and extra‐terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic “readers,” which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan‐BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.
Collapse
|
12
|
Wisniewski A, Georg GI. BET proteins: Investigating BRDT as a potential target for male contraception. Bioorg Med Chem Lett 2020; 30:126958. [PMID: 32019712 PMCID: PMC7023680 DOI: 10.1016/j.bmcl.2020.126958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
While many contraception options are available for women, birth control methods for men are limited to condoms and vasectomy. Past research into male contraceptives has focused on hormonal options but the associated side effects have thus far precluded this method from reaching the market. Non-hormonal male contraceptives and vas occlusion have also been explored, but to date no method has progressed past clinical testing. Recent interest in epigenetic research has unveiled a new potential non-hormonal male contraceptive target: the testis-specific bromodomain BRDT. Potent inhibitors for bromodomain-containing proteins are described in the literature, but a BRDT-specific compound has yet to be designed, prepared and tested. The high similarity between bromodomain proteins of the BET family makes development of selective and specific inhibitors both difficult and necessary. Selective inhibition of BRDT by a small molecule is an exciting new target in the search for a new non-hormonal male contraceptive.
Collapse
Affiliation(s)
- Andrea Wisniewski
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, United States
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, United States.
| |
Collapse
|
13
|
Zhou W, Jiang D, Tian J, Liu L, Lu T, Huang X, Sun H. Acetylation of H3K4, H3K9, and H3K27 mediated by p300 regulates the expression of GATA4 in cardiocytes. Genes Dis 2018; 6:318-325. [PMID: 32042871 PMCID: PMC6997570 DOI: 10.1016/j.gendis.2018.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022] Open
Abstract
GATA4 is a particularly important cardiogenic transcription factor and serves as a potent driver of cardiogenesis. Recent progress in the field has made it clear that histone acetylation can influence gene expression through changing the structure of chromatin. Our previous research had revealed that hypo-acetylation could repress gata4 expression in cardiocytes, however the underlying mechanism by which this occurred was still unclear. To reveal the mechanism of histone acetylation involved in the regulation of gata4 transcription, we concentrated on P300, one of the important histone acetyltransferase associated with cardiogenesis. We found that P300 participated in gata4 expression through regulating histone acetylation in embryonic mouse hearts. RNAi-mediated downregulation of P300 modulated the global acetylation of H3 and the acetylation of H3K4, H3K9, and H3K27 in gata4 and Tbx5 promoters. Interestingly, there was an obvious inhibition of gata4 transcription, whereas Tbx5 was not influenced. Furthermore, SGC-CBP30, the selective inhibitor of the bromodomain in CBP/P300, downregulated gata4 transcription by repressing the acetylation of H3K4, H3K9, and H3K27 in the gata4 promoters. Taken together, our results identified that acetylation of H3K4, H3K9, and H3K27 mediated by P300 plays an important role in regulation of gata4 expression in cardiogenesis.
Collapse
Affiliation(s)
- Wei Zhou
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Dagui Jiang
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jie Tian
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Lingjuan Liu
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Tiewei Lu
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Xupei Huang
- Department of Biomedical Science, Charlie E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Huichao Sun
- Heart Centre, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
14
|
Bennett MJ, Wu Y, Boloor A, Matuszkiewicz J, O'Connell SM, Shi L, Stansfield RK, Del Rosario JR, Veal JM, Hosfield DJ, Xu J, Kaldor SW, Stafford JA, Betancort JM. Design, synthesis and biological evaluation of novel 4-phenylisoquinolinone BET bromodomain inhibitors. Bioorg Med Chem Lett 2018; 28:1811-1816. [PMID: 29657099 DOI: 10.1016/j.bmcl.2018.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
The bromodomain and extra-terminal (BET) family of epigenetic proteins has attracted considerable attention in drug discovery given its involvement in regulating gene transcription. Screening a focused small molecule library based on the bromodomain pharmacophore resulted in the identification of 2-methylisoquinoline-1-one as a novel BET bromodomain-binding motif. Structure guided SAR exploration resulted in >10,000-fold potency improvement for the BRD4-BD1 bromodomain. Lead compounds exhibited excellent potencies in both biochemical and cellular assays in MYC-dependent cell lines. Compound 36 demonstrated good physicochemical properties and promising exposure levels in exploratory PK studies.
Collapse
Affiliation(s)
- Michael J Bennett
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Yiqin Wu
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Amogh Boloor
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Jennifer Matuszkiewicz
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Shawn M O'Connell
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Lihong Shi
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Ryan K Stansfield
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Joselyn R Del Rosario
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - James M Veal
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - David J Hosfield
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States
| | - Jiangchun Xu
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Stephen W Kaldor
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Jeffrey A Stafford
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Juan M Betancort
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States.
| |
Collapse
|
15
|
Nicholls SJ, Ray KK, Johansson JO, Gordon A, Sweeney M, Halliday C, Kulikowski E, Wong N, Kim SW, Schwartz GG. Selective BET Protein Inhibition with Apabetalone and Cardiovascular Events: A Pooled Analysis of Trials in Patients with Coronary Artery Disease. Am J Cardiovasc Drugs 2018; 18:109-115. [PMID: 29027131 DOI: 10.1007/s40256-017-0250-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Inhibition of bromodomain and extra-terminal (BET) proteins can modulate lipoprotein and inflammatory factors that mediate atherosclerosis. The impact of the BET inhibitor, apabetalone, on cardiovascular events is unknown. OBJECTIVE Our objective was to investigate the impact of apabetalone on cardiovascular event rates in a pooled analysis of clinical studies in patients with established coronary artery disease. METHODS We conducted a pooled analysis of patients (n = 798) with coronary artery disease who participated in clinical trials (ASSERT, ASSURE, SUSTAIN) that evaluated the impact of 3-6 months of treatment with apabetalone on lipid parameters and coronary atherosclerosis. The incidence of major adverse cardiovascular events (death, myocardial infarction, coronary revascularization, hospitalization for cardiovascular causes) in the treatment groups was evaluated. RESULTS At baseline, patients treated with apabetalone were more likely to be Caucasian, have a history of dyslipidemia, and be undertreated with ß-blocker and anti-platelet agents. Treatment with apabetalone produced the following dose-dependent changes compared with placebo: increases in apolipoprotein A-I (apoA-I) of up to 6.7% (P < 0.001), increases in high-density lipoprotein cholesterol (HDL-C) of up to 6.5% (P < 0.001), increases in large HDL particles of up to 23.3% (P < 0.001), and decreases in high-sensitivity C-reactive protein (hsCRP) of - 21.1% (P = 0.04). Apabetalone treatment did not affect atherogenic lipoproteins compared with placebo. Patients treated with apabetalone experienced fewer major adverse cardiovascular events than those treated with placebo (5.9 vs. 10.4%; P = 0.02), a finding that was more prominent in patients with diabetes (5.4 vs. 12.7%; P = 0.02), with baseline HDL-C < 39 mg/dl (5.5 vs. 12.8%; P = 0.01), or with elevated hsCRP levels (5.4 vs. 14.2%; P = 0.02). CONCLUSION Pooled analysis of short-term studies demonstrated fewer cardiovascular events among patients treated with the BET protein inhibitor, apabetalone, than among those treated with placebo. BET protein inhibition warrants further investigation as a novel approach to cardiovascular risk reduction.
Collapse
Affiliation(s)
- Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, PO Box 11060, Adelaide, SA, 5001, Australia.
| | - Kausik K Ray
- School of Public Health, Imperial College London, London, UK
| | | | | | | | | | | | | | - Susan W Kim
- South Australian Health and Medical Research Institute, University of Adelaide, PO Box 11060, Adelaide, SA, 5001, Australia
| | | |
Collapse
|
16
|
Mustafi S, Camarena V, Volmar CH, Huff TC, Sant DW, Brothers SP, Liu ZJ, Wahlestedt C, Wang G. Vitamin C Sensitizes Melanoma to BET Inhibitors. Cancer Res 2017; 78:572-583. [PMID: 29180474 DOI: 10.1158/0008-5472.can-17-2040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/28/2017] [Accepted: 11/08/2017] [Indexed: 11/16/2022]
Abstract
Bromodomain and extraterminal inhibitors (BETi) are promising cancer therapies, yet prominent side effects of BETi at effective doses have been reported in phase I clinical trials. Here, we screened a panel of small molecules targeting epigenetic modulators against human metastatic melanoma cells. Cells were pretreated with or without ascorbate (vitamin C), which promotes DNA demethylation and subsequently changes the sensitivity to drugs. Top hits were structurally unrelated BETi, including JQ1, I-BET151, CPI-203, and BI-2536. Ascorbate enhanced the efficacy of BETi by decreasing acetylation of histone H4, but not H3, while exerting no effect on the expression of BRD proteins. Histone acetyltransferase 1 (HAT1), which catalyzes H4K5ac and H4K12ac, was downregulated by ascorbate mainly via the TET-mediated DNA hydroxymethylation pathway. Loss of H4ac, especially H4K5ac and H4K12ac, disrupted the interaction between BRD4 and H4 by which ascorbate and BETi blocked the binding of BRD4 to acetylated histones. Cotreatment with ascorbate and JQ1 induced apoptosis and inhibited proliferation of cultured melanoma cells. Ascorbate deficiency as modeled in Gulo-/- mice diminished the treatment outcome of JQ1 for melanoma tumorgraft. In contrast, ascorbate supplementation lowered the effective dose of JQ1 needed to successfully inhibit melanoma tumors in mice. On the basis of our findings, future clinical trials with BETi should consider ascorbate levels in patients. Furthermore, ascorbate supplementation might help reduce the severe side effects that arise from BETi therapy by reducing the dosage necessary for treatment.Significance: This study shows that ascorbate can enhance the efficacy of BET inhibitors, providing a possible clinical solution to challenges arising in phase I trials from the dose-dependent side effects of this class of epigenetic therapy. Cancer Res; 78(2); 572-83. ©2017 AACR.
Collapse
Affiliation(s)
- Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Tyler C Huff
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - David W Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Shaun P Brothers
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Zhao-Jun Liu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Bourova-Flin E, Chuffart F, Rousseaux S, Khochbin S. The Role of Bromodomain Testis-Specific Factor, BRDT, in Cancer: A Biomarker and A Possible Therapeutic Target. CELL JOURNAL 2017; 19:1-8. [PMID: 28580303 PMCID: PMC5448322 DOI: 10.22074/cellj.2017.5060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 12/27/2022]
Abstract
Cancer cells have recently been shown to activate hundreds of normally silent
tissue-restricted genes, including a specific subset associated with cancer progression and
poor prognosis. Within these genes, a class of testis-specific genes designed as
cancer/testis, attracted special attention because of their oncogenic roles as well as
their potential use in immunotherapy. Here we focus on one of these genes encoding the
testis-specific member of the bromodomain and extra-terminal (BET) family,
known as BRDT. Aberrant activation of BRDT was first detected in lung cancers. In
this study, we report that the frequency of BRDT’s aberrant activation in lung cancer
varies according to the histological subtypes and in contrast with other cancer/testis
genes, it is rarely expressed in other solid tumours. The functional characterization
of BRDT in its physiological setting in male germ cells is now painting a clear portrait
of its normal activity and also suggests possible underlying oncogenic activities,
when the gene is ectopically activated in cancers. Also, these functional studies of
BRDT point to specific anti-cancer therapeutic strategies that could be used to “high-jack”
BRDT’s action and turn it against cancer cells, which express this gene. Finally,
BRDT’s expression could be used as a biomarker for cell sensitivity to BET bromodomain
inhibitors, which have become newly available as anti-cancer drugs.
Collapse
Affiliation(s)
- Ekaterina Bourova-Flin
- CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Florent Chuffart
- CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Saadi Khochbin
- CNRS UMR 5309, Inserm, U1209, University of Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|